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Abstract

A central aim of many statistical analyses of microarray data is to cluster genes according to their
similarity in expression behavior. In this paper, we perform clustering based on the likelihood fit
of a multivariate normal mixture. This approach has several advantages with respect to standard
partitioning or hierarchical algorithms; it has an unambiguous inferential characterization, it produces
soft partitions through membership probabilities, it allows one to model component mean vectors
and covariance structures, and to manage anomalous and missing observations in a natural way. In
particular, our mixture-based approach allows us to (i) model component mean vectors through linear
reparameterizations, (ii) model component covariance structures through constraints on a special
decomposition, (iii) handle outliers through the introduction of a contamination term (uniform on
the hypervolume of the data), and (iv) impute missing values. The maximum likelihood estimation
of parameters and membership probabilities, and the imputation of missing values, is accomplished
through the EM algorithm. Concerning model selection, we employ the classical Bayesian Information
Criterion, pragmatically combined with consideration of other features, such as overall membership
strength, within-cluster dispersion, and weight of the contamination term. To illustrate our approach,
we analyze publicly available data on the reaction of yeast cells to heat shocks. The results of
our analysis suggest two alternative clustering models, which provide two different and interesting

interpretations of the structure in the data.
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1 Introduction

The last few years have seen the rapid development of new experimental technologies to gather genomic
information. Among these, DNA Microarrays produce so-called global gene expression data, i.e. the
simultaneous recording of expression levels for thousands of genes, possibly the whole genome for simple
organisms such as yeast. The expression of a gene corresponds to its transcription abundance, or
speaking loosely, the intensity with which the gene is “copied upon” to allow, for example, the synthesis
of a certain protein. Investigating expression patterns for a very large number of known or putative
genes, and over a wide set of conditions, can provide invaluable insight on their roles, actions and
interactions. For example, the data we analyze in Section 5 contains expression measurements for the
whole yeast genome at several time points, following an abrupt change in temperature — a “heat shock”.

Many analyses of microarray data have focused on clustering genes according to some measure of
similarity between their expression profiles over a set of experimental conditions. The intent of gene
clustering is to ascertain whether the expression behavior of a very large and seemingly complex collective
of genes can be summarized through a small number of groups and characteristic expression patterns.
It is believed that genes grouped together because of profile similarity are likely to be involved in similar
or highly related functions, and perhaps to be co-regulated.

Standard partitioning or hierarchical clustering algorithms have been applied by several groups (see,
among others, Chu et al., 1998, Eisen et al., 1998, Spellman et al., 1998, Tamayo et al., 1999, Tavazoie
et al., 1999, Iyer et al., 1999), and have identified interesting gene groups and characteristic expression
patterns in several experimental contexts. However, the heuristic basis of these algorithms is generally
recognized as unsatisfactory. For example, microarray data are affected by several sources of error, and
often contain missing values. The outcomes of standard clustering algorithms can be very sensitive
to anomalous observations, and to the way that missing ones are imputed. Moreover, the reliability
of partitions and characteristic patterns produced by these algorithms is difficult to assess, and some
studies (e.g. Holter et al., 2000) suggest that expression data may not actually present well separated
clusters. A second generation of studies (see, among others, Brown et al., 2000, Kerr and Churchill, 2000,
Hastie et al., 2000, Van der Laan and Bryan, 2000, Heyer et al., 1999) have brought further progress

by using more sophisticated clustering strategies, employing resampling schemes, topology-constrained



and/or supervised versions of partitioning algorithms, etc.

Generally, and in particular when faced with the absence of clear-cut “natural” clusters, the analysis
can benefit enormously from algorithms that are capable of generating soft partitions, and of exploiting
existing information, hypotheses, and /or relevant covariates. Most recently, clustering techniques based
on the likelihood fit of multivariate normal mixtures have been applied to microarray data (see Holmes
and Bruno, 2000, Brasch and Friedman, 2001, Yeung et al., 2001, and for background on mixture
models, McLachan and Basford, 1988, Lindsay, 1995, McLachan and Peel, 2000). Here, we explore and
expand upon this approach. Its general advantages are an unambiguous inferential characterization, soft
partitioning achieved through membership probabilities, control on characteristic patterns and cluster
shapes implemented through the modeling of component mean vectors and covariance structures, and
very importantly, the management of anomalous and missing observations.

In particular, with our approach we can (i) model component mean vectors through linear reparame-
terizations; (ii) model component covariance structures through constraints on a special decomposition;
(iii) handle outliers through a contamination term (uniform on the hypervolume of the data; see Fraley
and Raftery, 1998); and (iv) impute missing observations.

In comparison to the above referenced applications of mixture-based clustering to microarray data,
we stress mean modeling and missing value imputation, and employ a different decomposition in mod-
eling covariances. Mean modeling (see, for instance, Quandt and Ramesey, 1978, Jones and McLachlan,
1992 and Peng et al., 1996) is crucial in some microarray applications. It permits one to use and/or
test specific hypotheses on characteristic expression patterns, in the quest for parsimonious and effective
descriptions of the data. Covariance modeling determines size, shape, and orientation of the putative
clusters. The covariance decomposition we employ is of interest because it separates the correlation
structure from the overall size and the coordinate-wise distribution of the variability. Finally, the impu-
tation of missing data values is very important because microarray data often contains a large quantity
of missing or unusable readings.

Another crucial advantage of mixture-based clustering is that fits involving different number of
components, as well as different constraint formulations for means and covariances, can be evaluated and
compared through sensible criteria such as likelihood ratios and BIC (Bayesian Information Criterion).

When comparing different constraint formulations on the same number of components, we propose



a pragmatic strategy in which BIC is accompanied by consideration of overall membership strength,
within-cluster dispersion, and contamination weight.

The computational challenge of fitting contaminated, high-dimensional normal mixtures under multi-
ple constraints is considerable, but the Expectation-Maximization (EM) algorithm implementation that
we have constructed manages it straightforwardly and efficiently, even when dealing with the thousands
of observations in a typical microarray data set.

The remainder of the paper is organized as follows: Section 2 provides a brief description of DNA
microarrays, and of how expression data are collected and preprocessed. Section 3 describes the con-
taminated multivariate normal mixture scheme, and gives examples of mean and covariance modeling.
Section 4 reviews EM maximum likelihood, and the criteria for model evaluation. Section 5 illustrates
our approach through the analysis of publicly available data on yeast reaction to heat shocks. Final

comments are given in Section 6, and technical details summarized in an Appendix.

2 A brief overview of microarray data

A typical microarray is a glass slide imprinted with a regular grid of thousands of small spots or holes,
each containing fragments of genetic material from lab generated DNA. Most positions in the grid
are occupied by known or putative genes whose expression behavior is under study. Others contain
replicates and various types of controls that may be employed in data preprocessing stages.

For “one-color” arrays, messenger RNA (mRNA), or possibly complementary DNA (cDNA), is
extracted from an experimental sample, labeled with a fluorescent dye, and poured over the chip.
Portions of the mRNA hybridize, or bind, preferentially to the resident DNA at different locations on
the slide. In “two-color” arrays, mRNA (or cDNA) from the experimental sample is again labelled with
a dye, usually red, while mRNA (cDNA) from a separate sample of “reference” cells is labeled with a
different dye, usually green. Both are then allowed to hybridize to the DNA on the microarray chip.

After hybridization, excess material is removed from the chip. An image is then generated by shining
light through the chip, and processed to extract a dye intensity — a separate reading is made for each
dye — at each grid position. This is the bare microarray data. Each intensity reading is proportional to

the amount of dye-tagged mRNA (cDNA) that has “bound” with the genetic material at a given grid



position, and thus to the expression of the corresponding gene in the original sample under consideration.

Most microarray studies involve several experimental conditions, with corresponding samples allo-
cated to different chips. In some cases, the data captures a time course; for instance, experimental
samples may be taken from the same system (an organism, or tissue culture) at discrete time points
during a process such as the cell cycle, or the reaction to a shock or treatment, etc. The aim in these
cases is to investigate gene expression variation along the process. In other cases, experimental con-
ditions are of a different nature; for instance, samples may be obtained from different tissues, such as
different cancers, organs, etc., with the aim of investigating differential expression of genes across them.

With two-color arrays, reference readings are obtained by using the same reference sample, dye-
tagged in green, on all chips. With one-color arrays, reference readings may be obtained by allocating
the reference sample to a separate chip. In other cases, reference readings are just an artificial construct
to “normalize” experimental measurements, so they could be readings chosen arbitrarily from one of
the experimental chips, or some average of readings from all experimental chips.

Final data from a microarray study are usually “properly normalized” log-ratios of experimental
readings to reference readings, representing an expression profile over experimental conditions for each
of the genes. The general aim of the various normalization procedures proposed in the literature is
to make log-ratios from different chips comparable, by eliminating gross sources of non-experimental
inter-chip variation in readings.

For more details on microarray experiments, image processing to obtain intensity readings, and
normalization procedures, see Eisen and Brown (1999), Yang et al. (2000),
and http://www.nhgri.nih.gov/DIR /VIP/Glossary/Illustration/microarray-technology. html.

Two additional steps, viewed sometimes as data preprocessing, and sometimes as an integral part
of the analysis, are filtering and missing value imputation. Filtering refers to separating out those
genes whose expression profiles do (or do not) show significant variation over conditions. This often will
restrict further analysis to hundreds, rather than thousands, of genes. The literature on heuristic and
rigorous criteria to evaluate significant variation is rapidly growing (see for example Dudoit et al., 2000,
and Lee et al., 2000).

Missing values occur when the experimental readings for some grid positions are lacking or unusable

(inconsistent, unreliable, above or below feasible detection levels, etc.) due to problems occurring in



the hybridization or the image processing phase. Protocols for missing value imputation range from
heuristic to statistically motivated, and have also been the object of growing attention (see for example
Hastie et al., 2001). In some studies, though, genes whose expression profiles are incomplete are simply

discarded at the outset.

3 The contaminated multivariate normal mixture scheme

Let y € R denote the vector of expression levels (the expression profile) of a gene on T conditions of
interest. We assume that y follows a mixture of C' multivariate Gaussian distributions, plus a uniform

contamination term; that is

1 C
Yy ~ FOV+Z7TCNT(I'I’C7ZC)7 (1)

c=1

where V' is the hypervolume of the data region (see Fraley and Raftery, 1998, p. 583), mg,...,mc are
non-negative weights adding up to 1, and Np(u,, X.) denotes the T-variate Gaussian distribution with
mean vector p, and covariance matrix ¥.. Equation (1) allows us to think of the expression profile
of any specific gene as coming from one of C' + 1 components, or rather, as belonging to either one
of C elliptically shaped clusters, or to a uniformly spread contamination class (component 0). The
contamination is meant to capture anomalous observations, so as to reduce their effect on the fit of
the Gaussian components. With our approach, it is possible to model both the mean vector and the

covariance matrix of each Gaussian component.

Mean modeling: Each p, can be rewritten as a linear function of a vector 8, of p. < T parameters;
that is

pe =X B, (2)
where X is an appropriate 1" X p. design matrix of full column rank. The tth row of such a matrix
contains the values of a set of auxiliary variables characterizing the ¢th condition. Equation (2) is
different from the parameterization used by Jones and McLachlan (1992). There, following a multivariate
regression approach, the mean of the cth component used to model the ith observation is given by
K;. = Bcxz;, where B, is a matrix of parameters and x; a vector of covariates characterizing the
observation (see also Peng et al., 1996). We prefer the parameterization in Eq. (2) because we are

interested in modeling mean patterns on the basis of auxiliary variables associated with the T" conditions.



Moreover, in the microarray context, covariates characterizing observations (i.e. genes) are seldomly
available.

A few examples will help in gauging the scope of the proposed parameterization. When X, = I,
W, is completely unconstrained; this can be useful for exploratory purposes since the corresponding
clusters will contain genes whose average expression profiles are unforeseen and hence not modeled. On
the other extreme, a pattern constant over conditions is modeled through the design matrix X, = 17,
where 17 denotes a column vector of T ones; constant patterns can be used for filtering purposes,
as the corresponding clusters will contain genes whose average expression profiles do not vary over
conditions. An intermediate situation is given by a mean pattern repeating itself over s = T'/u specified
subsets of u conditions; in this situation, the design matrix is X, = 1, ® I,,, where ® stands for the
Kronecker product. For time course data, say given at times 71,...,7r, mean patterns can represent
specified time trends. A linear trend is modeled through the two-column matrix X, = (17 7), where
7= (1 ... 1), while a quadratic trend is modeled through the three-column matrix X, = (17 7 q),
where ¢ = (17 ... 72)". Also, a mean pattern can be modeled on some conditions and left unconstrained
on others; for example, the block diagonal matrix X, = diag(I,, M, I;) leaves the first h and last &k
entries of p, unconstrained, while modeling the middle 7' — (h + k) through M.

It is worth noting that a mean pattern that is not constrained to be constant (e.g. an unconstrained
pattern, or a polynomially modeled pattern) may be constant or approximately constant in its estima-

tion, and thus can employed for filtering purposes (see Section 5 below).

Covariance modeling: Covariance matrices may also be constrained to embody knowledge relative to
the within-cluster variability structure. Banfield and Raftery (1993) employ a framework for representing
these matrices, based on a typical eigenvalue decomposition (see also Yeung et al. (2001)). There, X,
is represented as £, = A\.D A D! where X\, (a positive scalar) determines the volume of component c,
D, (an orthogonal matrix of eigenvectors) determines its orientation, and A, (a diagonal matrix with
entries proportional to the eigenvalues) determines its shape. In practice, these authors considered three
main types of covariance matrices: (i) totally unconstrained, with no assumption on the within-cluster
variability structure; (ii) diagonal with unconstrained entries, 3, = diag(c?,...,0%), representing a

situation in which within-cluster variability is unrelated over conditions, but may differ in size; (iii)

diagonal with equal entries, ¥. = o2Ir, representing a situation in which within-cluster variability



about the mean pattern is the same, and unrelated over conditions (spherical clusters).

Here, we consider an alternative decomposition to represent the covariance matrices, namely

DIRES agdiag(uc)ﬂcdiag(uc) (3)

where o2 s a positive scalar, v, is a T-vector with positive entries normalized so that v.v, = T, and

€2, is a correlation matrix. This decomposition has the interesting feature of separating the correlation

2

structure (£2.) from the overall size (o

) and the coordinate-wise distribution () of the variability.
Several models may be conceived on the basis of Eq. (3), depending on whether o2, v, and Q.
are totally unconstrained or constrained is some way. More precisely, within our approach, we may
require that: for each Gaussian component, the o2’s are totally unconstrained and have to be estimated
(U); 02 = 02, for c = 1,...,C, with 0? to be estimated (E); 02 = 52, for ¢ = 1,...,C, with &2 fixed
arbitrarily (F). Similarly, we may require that the v.’s and/or the Q.’s are U, E or F. The only rule
that has to be followed in combining these constraints is that: (i) if the o2’s are E, then v.’s must be
E or F, whereas, if the Ug’s are F then also the v.’s must be F; (ii) if the v.’s are E, then €.’s must

be E or F, whereas, if the v.’s are F then also the €.’s must be F. Among the models that may be

implemented, some of the most interesting are:

UUU: 02’s, v.’s and §2.’s are unconstrained; this formulation is useful in the preliminary stage of an

analysis, for explanatory purposes;

UUE: ¢%’s and v,’s are unconstrained but Q. = Q, for ¢ = 1,...,C, with € to be estimated; in this way

we require all Gaussian components to have the same correlation structure;

UUF: ¢%'s and v.’s are unconstrained but Q, = Q, forc = 1,...,C, with € fixed arbitrarily; for instance
we may have € = Iy (uncorrelation), © = (1—p)I;+ ply1% (equal correlation) or € with entries

wiy = plt~¥l (AR(1) structure), with p € (0, 1);

UEE: ¢2%’s are unconstrained but v, = v and Q. = Q, for c = 1,...,C, with v and £ to be estimated;
in this way we allow Gaussian components to differ in volume, but require them to have the same

shape and orientation;

UFF: 02's are unconstrained but v, = ¥ and Q, = , for ¢ = 1,...,C, with v and Q fixed arbitrarily;

in particular, when » = 17 and Q = It we have the so-called unequal volume spherical model;



EEE: 0?2 =%, v,=vand Q. =Q, forc=1,...,C, with 02, v and Q to be estimated; in this case all

components are bound to have the same covariance structure;

EFF: 02 = 0%, v = v and Q. = Q, for ¢ = 1,...,C, with ¢ to be estimated and ¥ and Q fixed
arbitrarily; in particular, when # = 17 and Q = I+ we have the so-called equal volume spherical

model.

In summary, according to our approach, a model is formulated by specifying: (i) the number of compo-
nents, C; (ii) the constraints on the means, through the matrices X.’s in the parameterization (2); and
(iii) the constraints on the covariance structures, formulated according to the decomposition (3). The
classical mixture of multivariate Gaussian distributions with unconstrained means and covariances may
be obtained setting X, = Iy, for ¢ = 1,...,C, and requiring covariances to be of the UUU type. We
refer to this model as the full model. However, the hope is to obtain a more parsimonious model posing
constraints on means and/or covariance matrices. In particular, since each 3. contains T(T + 1)/2
parameters, while each mean p,. contains only 7', constraints on covariances are likely to be more effec-
tive in reducing the number of parameters. On the other hand, constraints on means are often crucial
for incorporating or testing substantive hypotheses on characteristic expression behaviors. The search
for parsimonious representations, together with maximum likelihood estimation, is illustrated in the

following Section.

4 Maximum likelihood estimation and model selection

We implement maximum likelihood through the EM algorithm (Dempster et al., 1977), considering
our data as incomplete due to both the missing expression values, and the lack of information on the
component to which each observation/gene belongs.

The T-dimensional vector y; containing expression levels for the ith gene is split into two subvectors,
y? and y}', which refer, respectively, to the observed and unobserved (missing) expression levels for i.
Accordingly, the vector . is split into the two subvectors g, and pf. and the matrix X, into the four
submatrices X7, X, 31 and X}Y; for instance, X} has dimension (T — 0;) X 0;, where o; is the
dimension of y7, and is obtained by selecting the rows of X¥. corresponding to y;' and the columns

corresponding to y9. Now, let 7, contain the parameters in p, and X, and set w = (my ... m¢)’. Also,



let Y° be short-hand notation for all observed expression data, and @ for all the terms in the model
reparameterization (m, plus B,, ¢ = 1,...,C for the means, and o2, v, and Q, ¢ = 1,...,C for the
covariances). Finally, let f.(y?;7,.) be the density of the cth component of the mixture in y§ alone,
parameterized through 7, (in practice, this is the density of a 0;-dimensional Gaussian distribution

determined by p?. and 39°), and form the vector

flygsm) = Q/V(g) filysim) - fe(wineg)),

where n = (0} ... nf;)’, and V(y?) is the hypervolume of the region containing the observed expression
levels for gene i (see Appendix Al for details). With this notation, the log-likelihood may be expressed

as

lyo(8) =) log[x'f (yg;m)]. (4)

=1

This is referred to as the incomplete log-likelihood, in contrast to the complete log-likelihood. The latter
we could compute if we knew to which component each gene belonged, and all the unobserved expression
levels.

Let z;. = 1 if the ith gene belongs to the cth component, and 0 otherwise, and set z; = (250 ... zic)'-
Also, let Y be short-hand notation for all expression data (including unobserved values), and Z for all the
zic’s. Finally, let f.(y;;n.) be the density of the cth component in the whole y; (this is a T-dimensional

Gaussian), and form the vector

Flyism) = (1/V(y:) filyism) - fC(yi;ﬂc))'a

where the hypervolume V (y;) envelops the whole y,. Then, the complete log-likelihood may be expressed

as

N N
byz(8) = >_ zilog(m) + 3 z;log[f (yi; )], (5)

i=1
In order to find the vector value @ which maximizes ly-o (8), the EM algorithm iterates the following two
steps:
E-step: Using the current 5, compute the expected value of ly,z(@) given the incomplete data Y°; that

is E[ly,z(0)|Y°, @] In practice, this reduces to computing z; = E(z;|y?,6), fori =1,...,n, and

Yic = E(y;|zic = 1,y§’,§) and S;, = E(y,;y}|zic = l,yf,a), fori=1,...,nandc=1,...,C.
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M-step: Update 8 with the vector maximizing Elly,z(0)|Y°, 6].

Appendix A2 and A3 contain details on how the E- and M-steps are implemented under the constraints

defining the class of models in Section 3.

Membership probabilities and partitions: In addition to the parameter estimates, we obtain, for
all genes, estimated conditional probabilities of belonging to each of the mixture components. The
probability that the ith gene belongs to the cth component is estimated by the entry Zz;. of Z;, and
provides a measure of the confidence with which the gene may be assigned to a cluster, or to the
contamination class. Thought of as membership probabilities, the Z;.’s express a soft or fuzzy partition
(see Gordon, 1999, sec. 5.1), in which genes may not be unequivocally assigned to one component.
However, it is possible to derive a standard (hard) partition on the basis of these probabilities by
assigning each gene 7 to the component ¢; = ¢(z;), where ¢(2;) is the index of the largest entry of the
vector z;. Alternatively, we could construct a hard partition with an additional class (the (C' + 2)nd,
after the C regular clusters and the contamination class). This class would contain all genes whose
attribution is not straightforward; more precisely, we would assign gene ¢ to component ¢; = ¢(2;) when
m(Zz;) > 7, and to the additional class otherwise, where m(2;) is the value of the largest entry of Z;, and
v is a threshold level between 0 and 1. Whether or not the additional class is created, we can calculate
the percentage of genes confidently attributed to the mixture components; that is the percentage of the
n quantities m(z;) greater or equal to . This provides a measure of the overall membership strength
characterizing the fit; that is, of the natural “lumpiness” or parceability of the data points in the context

of the model under consideration (i.e. relative to the choice of C, X.’s, and X.’s type).

Missing values: Finally, for each gene, we obtain an estimate of the unobserved expression levels.
When there is strong evidence that gene i belongs to component ¢, the unobserved levels y;' may be
estimated through y;., if ¢ > 1, and through the center of the region of the unobserved data, yjj,
otherwise (see Appendix Al and A2 for details). When the attribution of gene 4 is not straightforward,

y} may be estimated as a linear combination of the vectors ¥;,, with coefficients Zj, ..., Zic-

Initialization and model selection: We conclude this section outlying a sequential strategy that may
be used to initialize the EM algorithm in a sensible way, and perform model selection. EM initialization

is crucial because the type of log-likelihood we are considering encompasses several local maxima. Let
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o and f]o be the mean and covariance matrix for the data completed assuming that all genes belong
to the contamination, and, on the basis of (3), decompose 3 in terms of 53, 93 and €. The strategy
we propose consists in fitting the full model for an increasing number of components, starting from
the contamination alone (C' = 0, as above), and then passing to C = 1,2, etc. (it must be noted
that the log-likelihood of each full model is unbounded, so that the fit identifies a local maximum —
see for example McLachlan and Basford, 1988). When fitting, say, the contamination plus C Gaussian
components, the starting value for 7 is set to

L (eary,
Cc+1

where 7 is the estimate obtained at the previous stage (i.e. fitting the contamination plus C—1 Gaussian

2~

& and Qg are set to, respectively, i, 52,

components). Moreover, the starting values for pz, oé, v
173 and ﬁo, whereas the starting values for the corresponding parameters of the other components are
simply set to the estimates obtained at the previous stage.

As one proceeds increasing the number of components, the Bayesian Information Criterion (BIC)

can be calculated for the corresponding full models. The BIC of a model is defined as
BIC = 2ly+(6) — rlog(n)

where r is the overall number of parameters (Schwarz, 1978). Additional components increase r, and
usually increase (or leave unchanged) the achieved maximum log-likelihood value. In most cases, this
produces a non-monotone behavior of the BIC (first increasing and then decreasing as components are
added) which permits a meaningful selection of the component number C.

In general, BIC allows for direct comparison between any two models and is advantageous with
respect to the likelihood ratio criterion which, in the mixture context, requires numerical estimation of
the null distribution of the deviance via bootstrap methods (see for instance McLachlan, 1987).

After identifying the C' whose full model provides maximal BIC, one can use mean and covariance
estimates obtained from the full model and/or substantive hypotheses to formulate restricted models
as described in Section 3. When fitting these models, parameter estimates from the full model are used
for initialization.

To compare restricted models to one another, and to the full model, it may be reasonable to take into

account other features of their fit, besides BIC. For example, one could consider the overall membership
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strength, within-cluster dispersion, and the estimated weight of the contamination term. These are, in a
sense, geometric features (how crowded are the spaces “between” clusters, how “tight” are the clusters,
how crowded is the “background” to the cluster structure) whose relative importance with respect to
BIC in selecting a final model will to a large extent depend on biological knowledge and the specific

aims of the clustering exercise.

5 An application: the response of yeast to heat shocks

Gasch et al. (2001) performed a large microarray study to investigate the time-course of expression in
yeast cells, as they respond to various types of environment changes. The original data is comprised
of expression levels for the entire identified yeast genome (n = 6152 known and putative genes) on a
total of over 140 conditions. Most of these conditions are a collection of time-courses, each spanning
the process of adaptation of yeast to a different environmental stress. The study aimed at identifying
characteristic expression patterns during adaptation, and their corresponding gene clusters. Using
hierarchical clustering techniques, the authors discuss universal responses to stress, as well as responses
that are specific to different stressors.

Here, we concentrate on data related to a heat shock experiment, in which the temperature is raised
suddenly from 25 to 37 degrees Celsius. This data is comprised of expression levels for the 6152 genes
on a T = 8 point time-course corresponding to 5, 10, 15, 20, 30, 40, 60 and 80 minutes after the heat
shock. The data are log-ratios obtained from two-color arrays. The reference sample was constructed
by pooling equal amounts of all experimental samples. The profiles of 2509 genes (40.78% of the total)
have missing values.

We begin our analysis by fitting full models with increasing number of components, in order to select
a reasonable value for C'. Here, maximal BIC is used as a selection criteria. Figure 1 plots the BIC
against component number C for the full models, as well as for some restricted models. From the figure,
we see that beyond the sharp jump from C' =1 to 2, the BIC has a broad peak around the maximum
at C = 7. For the full model with C' = 7, the first row of Table 1 shows its maximum likelihood
l (5), the BIC, and the estimated weight of the contamination term, 7y. Henceforth, we will focus on

contaminated mixtures with seven Gaussian components, and by posing constraints try to identify more
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parsimonious models.

Table 1: model evaluation (C = T7)

type 1(6) BIC o
full model 21787 -46322  0.0010
I free, EEE -24404  -49201 0.1445

IT free, EFF(sph) -34643 -69599 0.0166
IIT modeled, EEE -25561 -51681 0.0166
IV free, UUE -22356  -45994 0.0003

We first consider models in which the covariance structure of each Gaussian component is the same.
This assumes that all clusters have a common size, shape and orientation, and differ only by their
location in the T' = 8 dimensional space of the data. The most general such model allows the seven
cluster locations and the common cluster size, shape, and orientation to be completely unconstrained;
this is the free means, EEE covariances model (Model I). Figure 1 and Table 1 show that the BIC of
Model I is quite low with respect to the full model with seven components. Nonetheless, this model has
several attractive aspects. It presents good overall membership strength, “tight” clusters, and estimated
mean patterns that have straightforward interpretations.

The left panel of Fig. 2 shows the histogram of maximal membership probabilities (the m(2;)’s) for
Model I. This histogram displays a remarkable concentration at high values, indicating good membership
strength, and suggests that the soft partition in output from the fit is amenable to being turned into a
hard partition. The left panel of Fig. 3 shows the estimated mean patterns for Model 1. Before turning
to their description, consider the legend numbers at the right of the panel. They tabulate, for each
cluster, the percentage of data points attributed to it that have a maximal membership probability
equal to or larger than v = 0.8 (the first number), and those with a maximal membership probability
less than 0.8 (the second number). For most clusters, the strongly attributed data points constitute
the vast majority. The left panel of Fig. 4 shows the two up-regulated clusters obtained from the fit
(corresponding to the red patterns in the left panel of Fig. 3). These are representative of the “tight”
clusters (relatively small within-cluster dispersion) produced by this fit.

Now consider the estimated mean patterns of Model I (the left panel of Fig. 3). As observed by
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Gasch et al., the transcription response to heat is transient; all patterns, except possibly the solid blue
one, converge to a stable expression level by about 60 minutes after the shock, regardless of whether they
presented an up- (e.g. red patterns) or down-regulated (e.g. green patterns) response. Evidence is also
seen in favor of their hypothesis that very similar but “reciprocal” patterns manifest themselves in up
and down regulation (solid-red and solid-green patterns, respectively). There are also other, different
patterns of up and down-regulation. The pair of red patterns (both up-regulated) and the pair of
green patterns (both down-regulated) show relative temporal shifts in their transcription responses. For
example, while both red patterns ascend simultaneously, the dash-red pattern shows a more sustained
elevation, and a delayed decrease to its stable expression level. For the green patterns, the dash-green
pattern shows a rather oscillatory route to a downward peak that is delayed, and considerably smaller
in size, than that of the solid-green pattern. A delayed down-regulated pattern was also identified by
Gasch et al. Finally, we find non-concave behaviors in the down-regulated patterns; the small upward
bump in the dash-green pattern may or may not be relevant to its interpretation, but both the solid
and the dash-blue patterns show distinct “oscillating” behaviors below the zero-line.

In this fit, the red, green and blue patterns all correspond to relatively small clusters (see percentages
in the figure legend), and confirm the intuition that only a small fraction of the genome (here about
10.26%) is involved in the response to the heat shock. The solid black pattern, which shows practically
no variation along the time course, corresponds to a cluster containing about 88.36% of the genes. For
all practical purposes, this cluster is performing a filtering, accumulating all those profiles that do not
vary over time except with the type of fluctuations allowed by the estimated within-cluster covariance
matrix. A modest remainder (less than 2%) of the genes is attributed to the contamination class — the
estimated weight of the contamination term is 0.1445.

Remaining within the context of a common component covariance structure, we attempted further
reductions to see if a properly devised contraction in parameters might lead to an increase in the BIC.
We fitted a model with free means and common spherical covariance for the seven components, which
further assumes that the within-cluster variability is isotropic and uncorrelated along the time course;
this is the free means, EFF covariances (spherical) model, i.e., the equal volume spherical model discussed
in Section 3. Its BIC is so low (see Table 1 and Fig. 1), indeed much lower that of the full model with

one component, that the hypothesis of equal size spherical clusters is readily rejected. The estimated
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mean patterns produced by this fit are very similar to the centroids obtained by applying a standard
k-means algorithm to the data (not shown). They show parabolic-like behaviors before the stabilization
at t = 60, consistent with a simplistic hypothesis in which, during the transient response to heat,
expression patterns present different but constant (over time) degrees of convexity (if up-regulated), or
concavity (if down-regulated). Thus, we fitted a model with unconstrained common covariance, but
modeled means following parabolae up to t = 60, and with the last value (¢ = 80) equal to the one
in t = 60; this is the modeled means, EEE covariances model. Its BIC is better than that of the free
means, EFF covariances model, but still much lower than that of the free means, EEE model and that
of the full model in seven components. Also the hypothesis of “constant convexity (concavity)” during
the response to heat can be readily rejected.

Although the free means, EEE covariances model is appealing in many respects, its BIC might
be considered unsatisfactory. We attempt to improve the BIC by considering models that allow some
differentiation among the component covariances (i.e. in their size, shape and orientation). The increased
number of parameters might be overcome by gains in maximum likelihood. Free means and UEE
covariances, as well as the further restricted free means and UEF covariances with € following an
AR(1) structure (see Section 3) both provided unsatisfactory values of BIC.

Finally, we find that the model with free means and UUE covariances (Model IV) produces a larger
BIC than that of the full model. This model postulates that each component has a common (but not
fixed) correlation structure, while allowing for differences in overall variability volume (the o2’s) and
distribution over the time course (the v.’s).

If compared in terms of their BIC values, Model IV is clearly to be preferred to Model I (the free
means, EEE covariances one). Model IV also presents a much different picture of the data in terms of
its overall membership strength, within-cluster dispersion, and estimated mean patterns. As seen in the
right panel of Fig. 2, the histogram of the maximal membership probabilities is not concentrated on high
values; the soft partition in output from this fit is not easily converted into a hard one, as a very large
number of gene expression profiles actually fall “between” clusters. This impression is confirmed by the
percentages in the legend of the right panel of Fig. 3. For most clusters, weakly attributed data points
are in numbers comparable to, or exceeding, those of strongly attributed data points. The right panel

of Fig. 4 shows the two up-regulated clusters obtained from the fit (corresponding to the red patterns
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in the right panel of Fig. 3). Allowing for different component covariances results in different amounts
of within-cluster dispersion: some of the clusters are not “tight” in the traditional sense, and thus can
contain very different profiles, seemingly inconsistent with one another.

The estimated mean patterns of Model IV (right panel of Fig. 3) have some similarities and some
noticeable differences with those of Model I (the left panel). The transcription response to heat for Model
IV still appears to be transient, and we still find an up-regulated and a down-regulated pattern that
“mirror” one another (solid red and solid green). However, the strongly up-regulated, red-dash pattern
of Model I seems to be replaced by a weakly up-regulated one in Model IV (dash-red in right panel).
Also, the down-regulated patterns (solid and dash-green) of Model IV are generally weaker, nor do they
show the strong relative temporal shift in time to peaking (compare the dash-green patterns in the left
and right panels of Fig. 3). Finally, most of the evidence for non-concave down-regulated patterns in
Model I has disappeared for Model IV: the oscillating blue patterns in the left panel are replaced by the
gray ones in the right panel, which fluctuate about the zero line, and less markedly. In fact, the solid
and dash gray patterns may be performing a filtering here, together with the almost-constant solid black
pattern. The black pattern now accumulates only about 7.22% of the genes, while the two gray patterns
combine to an additional 65.58%. The latter may represent small-scale expression variations, possibly
not related to the response to heat. Indeed, such a scenario is not unlikely in microarray data analysis,
as it is extremely difficult to collect experimental samples in such a way that, at a whole-genome scale,
no expression variation occurs except for that related to the phenomenon under study; there is always
the possibility that systematic but unrelated patterns will manifest themselves in the data, though
hopefully on a scale smaller than that of the patterns of interest. Note, too, that the contamination
class in Model IV absorbs a very small percentage of genes, less than 0.02% (the estimated weight of
the contamination term is a mere 0.0003).

The free means, EEE covariances model, and the free means, UUE covariances model provide very
different descriptions of the data. Which may be more appropriate rests essentially on one’s interpre-
tation of overall membership strength and within-cluster dispersion. Through the first model — free
means, EEE covariances — the data can be well parsed into “tight” clusters with a common size, shape
and orientation, though one obtains a poor value of the BIC. In seeking to do better on this criterion,

one is led to the second model — free means, UUE covariances — with a very fuzzy partition, and clusters
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whose variability is characterized by different volumes and distributions over the time course. Either
might serve as a reasonable interpretation of the biological data. In terms of characterizing the mean
patterns, these two fits also lead to some common, and also some different behaviors, as discussed above.
Finally, while the first fit attributed a very modest percentage of the data to the contamination term,
the second is remarkable in that it makes essentially no use of it: almost all genes can be attributed,

albeit weakly, to one of the multivariate normal components.

6 Discussion

The clustering approach described in this paper provides advantages that are crucially important for
the analysis of microarray data. While making a clear case for this claim, the application we presented
in Section 5 barely scratches the surface in illustrating the versatility and power of this approach. For
a related study, we refer the reader to Yeung et al. (2001), in which several actual microarray data sets
and some artificial data are analyzed with a similar methodology.

Using a contaminated multivariate normal mixture, gene clustering can be performed in a compact,
highly informative and flexible fashion, within the unambiguous inferential setting provided by likelihood
methods. Since it replaces traditional cluster memberships with membership probabilities, the approach
is suitable for the analysis of data that do not present clear-cut “natural” clusters. Moreover, the
approach allows us to model cluster means and covariance structures to various degrees of specificity,
handle anomalous observations and impute missing values. Last, but certainly not least, it allows us to
employ statistically motivated criteria, such as BIC, to aid in the selection of number of clusters and
constraint formulations for means and covariances.

The scheme we presented in Section 3 is amenable to several extensions, which can further expand the
scope of this approach. One very relevant and straightforward extension would formalize relationships
among mean patterns through the sharing of some elements in their linear parameterizations — for
instance, if two components, say c; and co, employ the same design matrix expressing a linear trend
(X, = X¢, = (17 7)) it may be interesting to impose a common slope (.2 = f,2 = B. Also, a
Bayesian extension of the scheme, introducing prior distributions on the parameters, would provide an

additional way to exploit prior knowledge and hypotheses.
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As with many sophisticated partitioning techniques, computational and initialization issues are cru-
cial here. With our EM implementation, the computational burden is relatively mild, even in high
dimension and with thousands of observations. The computation time depends linearly on number of
components and number of observations, and is also affected by the patterns of missing values in the
data (loosely speaking, expression profiles missing the same entries decrease the computation time, while
expression profiles missing different entries increase it). Each of the fits presented in Section 5 required
a time between 10 and 20 minutes using Matlab functions (available from the authors). Concerning
initialization, we describe an iterative strategy in Section 4.

Finally, mixtures of multivariate Gaussian distributions may not be appropriate for some data.
Yeung et al. (2001), describe diagnostic procedures to assess whether data are compatible with the
structure postulated in Eq. (1), and discuss how to use data transformations to approximate such a
structure. It should be noted, too, that taking logarithms of the ratios between experimental and
reference readings, which is standard practice in many microarray studies, often suffices to mitigate

strong departures from Eq. (1). This was the case, for example, in the application we presented here.

Appendix: technical details

A1l: Center and volume of data range

Fori=1,...,nandt=1,...,T, let £; and O; be two sets of indices such that, if the entry y;; of y, has
been observed, then i € £; and t € O;. So, letting 7 = >z, yit/ls, where I; is the cardinality of Ly,
y, =min;cp, yir and y;7 = max;cp, yit, the entries of the vector g, are g, for t € O;, whereas V (y?) is

given by [T;co. (W — v, )-

A2: E-step, estimation of membership probabilities and of missing data
z; is given by

z; = [7'f (y?50)] " diag(®) £ (y§; 7); (6)
moreover, using an obvious notation, y,. is given by the two subvectors

00,

~ ~ -~ —~ S uo —~
y?c = y? and y;‘lc = E(y?‘zic = 1’ y?7 0) = H‘z + zic (210) l(y? - IJ‘ch) (7)
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and S;, by the following submatrices

00 ~0u U0 -uu

Sic :y(i)(y?)la Sic :yg(@%lc)l7 Sic :@?c(y?)la Sic =X

uu U0,
ic

00, _ 10U A~ S~
2:ic (zic) lzic +y?c(y;1c)l'

A3: M-step

Let Z.. = Y i1 Zic, Me = Y i—1(Zic/Z.c)Yi. and T = 31 (Zic/Z.c)Sic- Then, set @ = > i | Zic/n and,

for the full model (unconstrained modes and variances), perform the following steps, for c =1,...,C:
(i) set i, = m. and V. =T — fi fig;

(i) set €. = diag(v.) ' V.diag(v.) !, where v, = diag(V ;)/2;

(iii) set e = ver/T/vive;

(iv) set 52 = tr[diag(P.) "', diag(Pe) " V]/T.
When there is a linear constraint on the modes of some components, perform, for any of these compo-
nents, the following step instead of step (i):

() set B, = (X.5, Xo) ' X2, 'me, i, = X B, and V., = T — fim, — mfi, + B
Moreover, if the model for the €2.’s is E, perform the following step, instead of step (ii):

(iia) set Q = diag(w)~'Wdiag(w)™!, with W = Y, (2./%.)diag(D.) "1V diag(D.) !, 2. = ¥, 2.

and w = diag(W)'/2, and then set Q.= ﬁ, c=1,...,C;

if the model for the Q.’s is F, jump step (ii). Similarly, when the model the v.’s is either U or E and

the model for the Q.’s is either E or F, perform the following step, instead of step (iii):

(iiia) if the model for the v.’s is U, then find, for ¢ = 1,...,C, the vector r. with positive entries such
. ~ . . . . -1

that r. = A.diag(r.) ! /52, where A, is obtained by multiplying element-by-element V. and Q, ,

and set U, = r.\/T/rL.r.; if the model for the v.’s is E, then find the vector r» with positive entries

such that » = [ (2./2.) A]r and set D, = D, where D = r/T/r'r;

regardless of the model for the Q.’s, skip step (iii) if the model the v.’s is F. Finally, if the model for
the 52’s is E, use the matrix V = Y7 ,(2./%.)V . instead of V. at step (iv); if the model for the 52’s

is F, skip step (iv).
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Figure 1: The BIC for model selection in the yeast heat shock data.
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Figure 2: Histograms of maximal membership probabilities from the free means, EEE covariances fit (left) and

the free means UUE fit (right), with some summary statistics.
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Figure 3: estimated mean patterns for the free means, EEE covariances model (left) and the free means, UUE
covariances model (right). The legends contain the percentages of genes attributed to the clusters corresponding
to each pattern. The first number represents the percentage of strongly attributed genes (maximal membership

probability > 0.8), while the second number represents the percentage of weakly attributed genes (< 0.8).
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Figure 4: Two up-regulated clusters from the free means, EEE covariances fit (left) and the free means UUE fit
(right), shown as data points projected on the first principal component plane. Dots are members of the cluster
corresponding to the solid red pattern, and crosses members of the cluster corresponding to the dash red pattern
(see Fig. 3). Here, black symbols represent strongly attributed genes (maximal membership probability > 0.8),

and red symbols weakly attributed ones (< 0.8).
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