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Dimension Reduction: 
 
Think of the N rows of our data matrix as a cloud of points Xi , j=1...N  in RT. 
Each individual expression profile corresponds to a point/vector in T dimensions. 
 
Is there a way in which these profiles can be captured in lower dimension, substituting 
the original data cloud with its (orthogonal) projection on a subspace of RT? 
 
Neglecting temporarily the rationale by which this reduction can be achieved, suppose 
that the projection on a K < T dimensional subspace S – e.g. K=2, a plane – provides a 
good representation of the data. The (orthogonal) projection of each individual profile on 
such subspace, PSXi , can be expressed as a linear combination of any collection of K 
linearly independent vectors constituting a basis of the subspace.  
 
In particular, one selects an orthonormal basis: {V1 …VK}, ||Vk|| = 1, Vk’Vl = 0 . 
 
In the original coordinates, the basis vectors for the selected subspace are K 
“characteristic expression patterns”. The reduction implies that each individual profile 
can, to a good approximation, be reconstructed additively from these K basic patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, thinking of dimension as a measure of complexity, if we can achieve a substantial 
dimension reduction we prove that the intrinsic complexity of the profiles is low. 
 
Also, any further analysis can be restricted to the projected data (use of graphics, leaner 
computations during statistical analyses). 

Xi’s 

PSXi’s – some 
detail lost 

Vk’s 

PSXi = a1,iV1 + a2,iV2

T=3 � K=2

S 
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Dimension reduction is usually performed with an objective in mind: 
 
What do we want to preserve?  
 
Can we achieve a drop in dimension maintaining all or a large share of the 
information relative to a given feature of the data that is of interest to us?  
 
 
 
For example, suppose that for each condition we observe an additional variable Y, 
together with gene expression (the X’s). Y could be: 
 
Categorical (e.g. classification of the conditions) 
Quantitative 
 
We might want to study how Y depends on the X’s, and thus try to achieve a dimension 
reduction of the X’s that preserves information on Y contained in the original data. We 
will talk about this later. 
 
 
 
Here, we consider dimension reduction aimed at preserving the structure of the X’s… 
Of course, what we mean by structure, or what aspect of the structure we are interested 
in, must be qualified! 
 
 
 
First dimension reduction method:  PRINCIPAL COMPONENTS ANALYSIS 
 
 
 
Structural feature of interest is the variability of the X’s 
 
We look for a low-dimensional subspace capturing a large share of the overall variability 
of the data cloud. 
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For the purpouse of investigating the variability structure, is does not matter where the 
data cloud is centered (mean vector; average expression profile) 
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Thus performing the analysis on the X’s, or the X’s centered by column is the same 
 
 

NiX i ...1, =              NiXX i ...1),( =−  
 
 
On the other hand, whether we apply PCA to X’s that have been centered and 
standardized by row, or not, makes a difference… perfectly fine if the centering and 
standardization by row makes sense for our study, but we have to be aware of it! 
 
 
The geometry of centering and standardizing by row: 
 
Centering by row 
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Standardizing by row 
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The data is on a hyperplane of dim T-1 
(could be 27…) 

translate the origin 

The data is on the hypersphere of radius 1 about 
the origin 
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The first phase of PCA consist of determining a set of T orthogonal directions, ordered 
in terms of the variability displayed by the data along them. 
 
 
If the data cloud is (hyper) ellipsoidal, this is equivalent to determining the “natural axes” 
of the cloud, ordered in terms of their spread. 
 
 
Aside: For Gaussian data, all there is to the structure is center (that we “translate out”) 
and variability structure; no odd shapes, no clusters, no holes… thus PCA is in a sense an 
exhaustive dimension reduction tool. Not so for data whose structure is more 
complicated, but PCA can still be applied as a tool aiming at variability alone! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first direction/component 
captures most of the variability 

The first direction captures most of the 
variability, and the clustered structure 

The first direction captures most of the 
variability, but not the clustered structure

T=2 
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Equivalently, consider the variance/covariance matrix over conditions as calculated on 
our expression profiles, with its spectral decomposition: 
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Take the directions spanned by the eigenvectors, ordered in terms of the eigenvalue size 
 
Eigenvalues are always real and non-negative, because a var/cov matrix is always non-
negative definite. If one or more are 0, the data cloud lives in lower dimension to start 
with . 
 
(h eigenvalues = 0, cloud lives in a T-h dimensional affine subspace; EXACTLY. For 
example at least one eigenvalue will be zero if the data were row-centered) 
 
Eigenvectors {V1 …VT} are orthogonal Vk’Vl = 0  

normal ||Vk|| = 1  
 
by construction; thus, they provide an orthonormal basis of RT alternative to {e1 …eT} . 
 
{V1 …VT}  is a rotation of {e1 …eT} . 
 
 
 
 
 
 
 
 
Can also write 
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In the new coordinate system, the data cloud has a diagonal var/cov matrix 
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Each Principal component is a 
linear combination of the 
original coordinate variables 

Coeff’s with which the original 
variables enter the combination 
(size and sign, interpret!) 

Each profile can be exactly 
expressed as a linear 
combination of the principal 
components 

Coeff’s with which the principal 
components enter the combination 
(size and sign, interpret!) 
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Passing from N profiles to T “characteristic patterns” through which all profiles can be 
exactly reconstructed, do we achieve a simplification/reduction? 
 
 
Yes, but only to the extent that there isn’t more than so much information in the data to 
start with…  
 
… if we observe expression only on T < N conditions, profiles are bound to be 
summarizable as combinations on T fundamental ones! 
 
 
 
A real simplification/reduction occurs if we actually have that, as a group 
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(at least in terms of variance structure…) 
 
 
 
 
The second phase of PCA concerns how to determine how many components are 
necessary to achieve a good approximation. 
 
 
 
 

 


