
Notes on the public genome paper
Overview: For the purposes of Bioinformatics I, our immediate goal in studying the genome paper
published in Nature is to identify some major problems in computational sequence analysis and
to see how they are currently being solved. As we’ll see, much of the reported results were found
by programs written just for the paper; there’s no doubt that being able to write your own
programs (or get them quickly written for you) is extremely useful in many aspects of genome
analysis. On the other hand, a number of general-purpose programs were critical, and we’ll
identify some of them.

Generating and evaluating the sequence data (pp. 863-875). Fig. 2 on p. 863 summarizes the
approach taken by the public consortium. (Celera by-passed the BAC library and clone mapping
steps.) Most of the software used to generate the sequence data is of interest only to the large
sequencing centers. The most critical computational problem is assembling the sequence “reads”
(roughly 500 bp with a 1% error rate) into an accurate genome sequence. The consortium used
the PHRED/PHRAP software package to do this. Assembly of whole-genome shotgun data (e.g.
by Celera and with the mouse and rat genome sequences) requires different assembly programs.
We won’t cover them in Bioinformatics I.

Variation in GC content (pp. 876-877). See Fig. 12, p. 876. Looking at big intervals of the
genome, one sees that the percent of G and C nucleotides varies more than can be explained
by random fluctuations in a uniform process. The genome average is 42% G+C, but there are
regions well above 50%. I don’t see any need for general-purpose software here. Mike could
write a program to produce Fig. 12 in a few hours. (I’ll use the name “Mike” for a hypothetical
undergraduate who is a good programmer.)

CpG islands (pp. 877-878). One needs a precise definition of a “CpG island”. A typical one
goes something like “a region of at least 200 bp with at most 50% G+C where the number of
CpG dinucleotides is at least 0.6 of what would be expected by chance”. Of course, there are
additional subtleties about precisely where a CpG island starts and stops. Fortunately, the list
of CpG islands that one finds is not very sensitive to the precise definition. There programs
available to find CpG islands, or Mike could write one in a day or two.

Recombination rates (pp. 878-879). I won’t go there.

Interspersed repeats (pp. 879-888). An absolutely wonderful analysis, mostly by Arian Smit.
Incidentally, the Celera paper says almost nothing about repeats. Look especially at Fig. 18 (p.
881) and Fig. 23 (p. 884). Arian has produced a great (though slow) program for identifying
interspersed repeats in (mostly mammalian) genomic sequences. Everyone uses it, including you.
Repeats of a given family can be compared to predict a “consensus” ancestral sequence, to which
the individual elements are related by substitution, insertion and deletion events over evolu-
tionary time. By comparing the copy with the consensus sequence, RepeatMasker determines a
percent divergence, which is proportional to the age of the insertion event. Clearly, a number of
special-purpose programs were needed to produce the information reported here.

Simple sequence repeats (pp. 888-889). A few percent of the human genome (more in mouse)
consists of tandem repeats of very short sequences (e.g., CACACACA· · ·). RepeatMasker finds
some of these, and there are programs and Web servers designed specifically to find tandem

1



repeats. We probably won’t say any more about this topic.

Segmental duplication (pp. 889-892). One of the “news flashes” of the genome paper is that
about 5% of the human genome consists of long and highly similar (i.e., very recent) duplications.
Programs that find such regions can be simple and extremely fast. Two such programs (SSAHA
and BLAT) have been published in the last year; might make a good term project for a computer-
type student.

Non-coding RNAs (pp. 892-896). A very hot topic in both biology and bioinformatics. Finding
these genes in genomic sequence is a completely different computational problem from finding
protein-coding genes. This is a great topic for a semester report by a team consisting of a biologist
and a computer scientist.

Protein-coding genes (pp. 896-901). There are two main classes of computational tools for
gene prediction. First, there are “ab initio” methods, which use only properties of the genomic
sequences, such a specific short patterns associated with genes and longer range differences
between coding and non-coding DNA (e.g., GC content). The clear favorite tool is GenScan,
though many others have been written. Second, the genomic sequence is compared with databases
of known DNA and protein sequences; regions similar to a known protein are almost certainly
a gene (or pseudo-gene), and moreover the newly discovered gene can be hypothesized to share
any known properties of the database sequence. The most popular database searching program
is called Blast, with FastA a not-too-distant second. Other programs (the public consortium
used Spidey and Celera used Sim4) do a significantly better job at precisely aligning an EST or
gene (cDNA) sequence with the genome. Bioinformatics I devotes much time to ab initio gene
prediction and database searching.

Proteome analysis (pp. 901-908). Perhaps the most common computation in bioinformatics is
to compare a protein sequence with every other known protein, most frequently using Blastp or
PSI-Blast (both discussed in Bioinformatics I). Much of “protein space” consists of “domains”
that perform some common function and are shared among many proteins. Many groups have
made a database of these domains and produced a Web site where a submitted protein sequence
is analyzed to find any domains that it might contain. Bioinformatics I will briefly cover this
topic.

Comparison of the human and mouse genomes (pp. 909-910). One computational approach for
making sense of the human genome is to compare it with the mouse sequence. Naturally, this
topic is much more central to the mouse genome project, since the mouse wasn’t sequenced when
this paper was written (not to mention our species-centricity). The class with cover this subject.

2


