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ABSTRACT

Conserved segments in DNA or protein sequences
are strong candidates for functional elements and
thus appropriate methods for computing them need
to be developed and compared. We describe five
methods and computer programs for finding highly
conserved blocks within previously computed
multiple alignments, primarily for DNA sequences.
Two of the methods are already in common use;
these are based on good column agreement and high
information content. Three additional methods find
blocks with minimal evolutionary change, blocks that
differ in at most k positions per row from a known
center sequence and blocks that differ in at most k
positions per row from a center sequence that is
unknown a priori. The center sequence in the latter
two methods is a way to model potential binding
sites for known or unknown proteins in DNA
sequences. The efficacy of each method was evalu-
ated by analysis of three extensively analyzed regu-
latory regions in mammalian ββββ-globin gene clusters
and the control region of bacterial arabinose operons.
Although all five methods have quite different theo-
retical underpinnings, they produce rather similar
results on these data sets when their parameters are
adjusted to best approximate the experimental data.
The optimal parameters for the method based on
information content varied little for different regula-
tory regions of the ββββ-globin gene cluster and hence
may be extrapolated to many other regulatory
regions. The programs based on maximum allowed
mismatches per row have simple parameters whose
values can be chosen a priori and thus they may be

more useful than the other methods when calibration
against known functional sites is not available.

INTRODUCTION

The rapid expansion in the amount of DNA and inferre
protein sequence data resulting from the progress of geno
initiatives and other projects has led to a compelling need
computational aids in identifying important, functiona
segments within these sequences (1). One successful appr
has been to find sequences that are highly similar in phy
genetic comparisons; these slowly changing sequences h
been reliable guides to functional elements both in prote
coding (2,3) and regulatory (4,5) regions of genes. This pa
presents and compares five methods, three of them novel,
identifying potential candidates for regions within homologou
DNA sequences that have experienced natural selection.
applications discussed are for gene regulatory regio
although these methods can be applied to protein cod
regions as well.

Some important terms are used in different ways in the lite
ture, so the following paragraph defines them within th
context of this study. A conserved character is one that w
present in the common ancestral species and has b
preserved in the contemporary species being examined.
alignment of the DNA sequences of homologous genes fro
two related species reveals positions with identical nucle
tides. An identical nucleotide at a given position may ha
been preserved because of selection against change in
sequence, in which case it is important for some functio
However, not all conserved characters are functional (6). F
instance, orthologous genes are, by definition, descended f
the same gene in the last common ancestral species and
will share common sequences even in unselected regions
some period of time. The rate of sequence change is consi
ably slower in selected regions than in non-selected regions
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and thus after the species have been separated for a sufficient
period of time, DNA segments under selection (i.e. functional
sequences) will have significantly higher similarity scores than
non-selected regions. Various measures for sequence simi-
larity have been used to construct optimal pairwise alignments
(8) and robust (but not mathematically optimal) alignments of
three or more sequences (9).

Given a set of conserved sequences, one would like to
distinguish functional (selected) regions from those whose
similarity reflects the residual common ancestral sequence that
has not yet changed via evolutionary drift. One approach is to
use pairwise alignments of homologous genes from species
that separated so long ago that drift has changed all unselected
regions. Many studies have used conservation of amino acid
sequence in proteins from species as distantly related as yeast
and human as one guide to functional assignments. Further-
more, nucleotide sequences conserved in non-coding segments
of homologous genes from mice and humans are frequently
informative guides to regulatory regions (10). Substantial
resolving power is added by including more than two
sequences in a multiple sequence alignment, since the likeli-
hood of random column identities in such a multiple alignment
is enormously lower than in a pairwise alignment. Since each
lineage diverged independently after separation from a
common ancestor, the phylogenetic distances covered are
effectively additive and thus comparisons among a group of
eutherian mammals can show the effects of a much longer
period of divergence than the time since they separated from
the last common ancestor. Hence, multiple alignments are less
likely to show residual similarities in non-selected regions. Of
course the true test of functionality must be experimental, so in
order to gain the most benefit from computational tools, it
would be prudent to try to establish a set of approaches and
criteria that are successful in identifying known functional
regions within an alignment.

The problem of identifying conserved sequence blocks in
multiple alignments is, therefore, critical and the application of
computational tools to their detection in long sequences is
imperative. A multiple alignment generates a matrix with each
DNA sequence occupying a row so that each nucleotide is
placed in an appropriate column. A consecutive group of
columns, or block, can be identified as conserved based on a
number of approaches. The simplest is to compute the level of
similarity in each column and find blocks that fit user-defined
criteria for the degree of similarity per column and the length
of the block. This column agreement approach does not take
into account the effects of nucleotide frequency in the genes
under consideration and thus Schneideret al. (11) developed a
metric called information content that incorporates both
nucleotide similarities and overall nucleotide composition as a
measure of column similarity. These methods are not influ-
enced by the shape of the phylogenetic tree deduced from the
contemporary sequences (except to the extent that the multiple
alignment itself depends on the order in which the sequences
are added) (12), but a method based on minimal evolutionary
change uses phylogenetic information to identify conserved
blocks. The last two approaches are aimed at finding protein
binding sites on DNA. Such sites are usually a series of consec-
utive positions, one or more of which can vary somewhat
without measurably changing the binding affinity. Thus it is
desirable to examine a series of neighboring positions in each

row when finding blocks. Each row-based method allows up
k mismatches per row; in one method the mismatches are r
tive to a specified ‘center’ sequence (e.g. the human sequen
and in the other the mismatches are relative to an unkno
‘center’ sequence. In this latter approach, the unknown cen
sequence could represent a consensus binding site for s
unknown transcription factor. We evaluate the efficacy of ea
of these methods for finding experimentally determined fun
tional regions within three regulatory regions of mammalianβ-
globin gene clusters and one bacterial regulatory regio
However, they can be applied to any multiple alignmen
Moreover, the methods used here could also be used to e
uate and improve the program that generates the alignmen

MATERIALS AND METHODS

DNA sequences and alignments

DNA sequences from theβ-globin locus control regions
(LCRs) of human (combined GenBank loci HUMHBB an
HUMBGLOBC), galago (OCU60902), rabbit (combined
GenBank loci OCU63091 and RABBGLOB), goa
(GOTGLOBE), cow (BOVBG) and mouse (a collation of loc
AF071080, MMMLCRHS4, MMMLCRHS3, MMCONREG
and MMBGCXD provided by M. Bender) were aligned usin
the programyama2(12). Sequences and full alignments ar
available at our Globin Gene Server (13,14) at: http://glob
cse.psu.edu/ . TheEscherichia coliK-12 sequence is from
Blattner et al. (15). The sequences of related bacteria we
obtained from the following sites:Salmonella typhimurium, ftp://
genome.wustl.edu/pub/gsc1/sequence/st.louis/bacterial/
salmonella/B_STM/B_STM.full.seq;Salmonella typhi, ftp://
ftp.sanger.ac.uk/pub/pathogens/st/ST.dbs;Salmonella paratyphi
A, ftp://genome.wustl.edu/pub/gsc1/sequence/st.louis/bacte
salmonella/B_SPA/BEFORE_MELD/B_SPA.full.seq;Kleb-
siella pneumonia, ftp://genome.wustl.edu/pub/gsc1/sequenc
st.louis/bacterial/salmonella/B_KPN/B_KPN.full.seq.

The regions selected for the calibrations of parameters w
7188–7487, 11240–11510 and 64561–64826 (–263 to +3)
HS3, HS2 and theHBB promoter, respectively, in the
combined human sequence. A given nucleotide position in t
sequence is 2687 larger than in GenBank locus HUMHB
The list of nucleotide positions assigned as functional is at t
web site, along with references.

The region selected for calibration against the bacter
araBAD–araC regulatory region begins just before the ATG
start codon ofaraB (oriented to the left) and ends just befor
the ATG start codon ofaraC (oriented to the right). This
corresponds to positions 70049–70386 in theE.coli sequence.
To align the five bacterial sequences, the sequences
matched thearaBAD–araC intergenic region in pairwise
comparisons with theE.coli sequence were extracted and the
aligned simultaneously.

Programs for finding conserved sequence blocks

Certain parameters are common to all of the tools. T
minimum length of the regions to be reported and th
minimum number of sequences which must be active (i
present in that region of the alignment) are selectable by
user. Also, the search can be conducted in the entire alignm
or it can be restricted to a portion specified by a given range
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any of the sequences. The results can either be reported as a list
of the selected regions’ end-points together with their associ-
ated consensus/ancestral/center sequences (explained below)
or displayed as boxed regions in an alignment diagram. A
server running these programs on the alignment of mammalian
β-globin gene clusters is available at the Globin Gene Server.

Each utility has at least two ways of dealing with gaps. In the
first, columns containing a gap symbol will be rejected, so the
reported regions do not contain any gaps. Alternatively, gaps
can be treated just like ordinary characters. Ambiguity codes
(e.g. W representing A or T) can be permitted in columns. Full
details about treatment of gaps and ambiguity codes are avail-
able at our web site.

agree. This utility locates regions in a given alignment that
have good column agreement. The columns are examined indi-
vidually to determine whether or not they meet a user-specified
threshold for letter agreement, and runs of columns passing
this test are reported.

infocon.When searching for conserved regions in alignments,
the region’s length is often a reliable indicator that some func-
tionality was preserved across the species. However, as the
conservation need not be perfect, such regions might be frag-
mented into conserved pieces too small to be detected, and a
systematic way to link the smaller regions is needed. The next
two utilities we describe,infocon and phylogen, attempt to
solve this problem. The idea is to assign a numerical score to
each column and then look for runs of columns meeting the
following two conditions: (i) their cumulative score (obtained
by adding together the individual column scores) is no smaller
than the score of any of their sub-runs; and (ii) they are
maximal with this property, i.e. they are not contained in any
longer run having the property (i). We refer to such regions as
‘full runs’. Two full runs cannot partially overlap, i.e. if they
have a position in common, they must be identical (16).

The infocontool finds full runs of columns with high infor-
mation content in the given alignment. To do this, each column
is assigned an intermediate score that measures its information
content, based on the frequencies of the letters both within the
column and within the alignment as a whole (11,17). The exact
value of this score is the fraction 1/L of the logarithm of the
likelihood ratio obtained for the frequency of letters within the
alignment and within the column under examination, whereL
is the number of active sequences in the alignment column. As
a numerical example, consider the alignment in Figure 1A,
which is part of a longer alignment. The overall letter frequen-
cies in the longer alignment (not shown) arefA = 58 525/
192 535,fC = 36 937/192 535,fG = 38 963/192 535 andfT =
58 110/192 535, since the counts of the A, C, G and T letters in
the alignment are 58 525, 36 937, 38 963 and 58 110, totaling
192 535. Similarly, the letter frequencies within column 1
of the alignment (C,C,T) arefcA = 0, fcC = 2/3, fcG = 0 andfcT
= 1/3.L is 3.

The information content for column 1, which will serve as its
intermediate score, can then be computed as:

Information content = 1/3 log2(Pfc/Pf)

where

andncA = 0, ncC = 2, ncG = 0 andncT = 1 are the letter counts
for column 1. The resulting value is 1.2457797 for the inform
tion content.

It is imperative that these intermediate scores be adjusted
the results to be relevant. Indeed, as the raw informati
content is always a positive value, each examined colu
would increase the cumulative score and be included in
current region, so the entire alignment would be report
erroneously as the result. Consequently, some negative colu
scores are necessary to separate the regions of interest
those of high information content. Accordingly, the score
adjusted by subtracting the average per-column informat
content of the alignment, which is a constant for the alignme
under consideration, and/or a user-specified constant, calle
anchor value.

phylogen. In the phylogen program, columns are scored
following the schemes outlined in Fitch (18) and Sankoff an
Rousseau (19), based on the evolutionary relationships am
the sequences of the given alignment implied by a suppl
phylogenetic tree. The phylogenetic tree has a leaf node
each species and each internal node represents a putaPfc/Pf fcA/fA( )

ncA fcC/fC( )
ncC fcG/fG( )

ncG fcT/fT( )
ncT=

Figure 1. Alignments and trees that illustrate the different methods for findin
conserved sequences. (A) A hypothetical alignment illustratinginfocon and
kunk. (B–E) Illustrations of features ofphylogen: (B) one column of a hypo-
thetical alignment; (C) diagram of the phylogenetic tree used with ourphylo-
gentool; (D) illustration of assigning scores inphylogen; (E) illustration of the
change in column score with a different tree. (F) A hypothetical alignment to
illustratekkno.
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common ancestor for the species in its sub-tree. For each
column,phylogenassigns to each leaf node the letter from the
alignment row of the corresponding species, and labels the
internal nodes so as to minimize the total number of changes in
the tree. This number is the initial score associated with the
column and it is computed as the total edge weight of the
labeled tree, where an edge has weight 1 if it corresponds to a
letter change, and 0 if it connects two nodes labeled with the
same character. The root label is named the ‘ancestral’ char-
acter for the column.

To illustrate the approach used by this program, an optimal
assignment of letters to internal nodes for the aligned column
in Figure 1B, given the phylogenetic tree in Figure 1C, is
presented in Figure 1D. The initial column score is 1 in this
case. The optimal assignment and the corresponding score may
change if a different tree is used. For instance, one could make
rabbit and goat a monophyletic group, as shown in Figure 1E,
which results in an increase in the initial column score to 2.

Since well-conserved columns will have low scores, but the
selection algorithm is geared toward maximization, the column
scores are adjusted by subtracting them from a suitable ‘anchor
value’. However, as with theinfocon program, it is essential
that both positive and negative scores occur, so the anchor
value must be chosen carefully. It can be calculated by the
program, as either the current number of active rows for a
column or the current number of active rows not containing a
gap, or it can be set to an arbitrary non-negative number.
Combinations of these values are also possible.

kkno. The kkno program scans the alignment to determine,
starting at each position, the longest region in which no row
differs from a specified, known ‘center’ sequence in more than
k positions. The parameterk, denoting the number of permitted
mismatches, is user-selectable. The known center can be an
existing alignment sequence or specified separately.

As an example of applying thekkno program allowing 1
mismatch per row (k = 1), consider the hypothetical alignment
in Figure 1F. Given the center ACCGTGCAC, the longest
qualifying regions starting at positions 1 and 2 span the ranges
of columns 1–5 and 2–8, respectively. The mismatches in
every row are underlined.

kunk.Thekunkutility is similar to kknoexcept that the center
sequence is not known a priori; instead, the program computes
the ‘best’ center sequence for each conserved region it finds.
This center sequence can be thought of as belonging to a
common ancestor of the species represented in the alignment
or as a potential binding site for known or unidentified
proteins.

For each column in the alignment, the algorithm recursively
examines all possible center sequences starting at that position
to see how far the region can be extended and back-tracks
when the extension becomes impossible. The quality measure
for assessing a potential center sequence is the sum of the
squares of the number of mismatches between it and the align-
ment sequences within the region. A lower value indicates a
better candidate for the center sequence. Only characters
within a column can be used in the center sequence.

As a consequence, this method is more flexible thankkno, in
that it allows consecutive letters in the center sequence to be
drawn from possibly different alignment rows. Moreover, it

allows the letter inhabiting a certain position in the cent
sequence to vary between applications of the procedure
different starting columns. For instance, fork = 1, the best
center sequence for the region starting at position 1 (colum
1–7) in the alignment of Figure 1A is CTATGTG, renderin
‘A’ as the letter representing the alignment column 3 (i.e. occ
pying the position corresponding to the alignment column 3
In contrast, the best center sequence for the region startin
position 2 (columns 2–10) is TTTGTGTAA, rendering ‘T’ for
the same column. Notice that CTATGTG does not correspo
to any of the alignment sequences in the region. Ifkknowere
used instead, with the human sequence as center, the reg
detected at positions 1 and 2 would extend only up to colum
2 and 7, respectively.

Calibration of parameters for each method against known
functional sequences

Underlying our parameter calibration scheme are som
remarkable monotonicity properties, formalized in Stojanov
(20). It is intuitive that a larger percentage threshold f
column similarity in agree or a lower number of permitted
mismatches inkunk and kkno lead to a smaller number and
shorter length of the reported regions. However, it is le
obvious how the results change when varying the parame
values for phylogen and infocon. For a fixed required
minimum region length, regions obtained byphylogenwith a
larger anchor value always include those obtained with sma
ones (20). Similarly, regions produced byinfocondecrease in
number and extent as the value of the score adjustment par
eter increases. The analysis becomes more complex w
other parameters are considered, such as the minimum len
required for reporting a region or the choice for the flexib
anchors inphylogen.

To determine good settings for these adjustable paramet
we conducted a series of tests on our multiple alignment of
β-globin gene cluster (5) using the five utilities described an
varying the values of the relevant parameters for each meth
The goal was to determine the sets of parameter values
would minimize a chosen cost function. Specifically, the co
function was the total count of false positives and false neg
tives with respect to a set of experimentally determined fun
tional sites. A false positive is a position in the huma
sequence that does not belong to any of the known functio
sites but was reported by the program under examination
false negative is a position in the human sequence that belo
to a known functional site but was not reported by the progra

Two types of assessments were performed: per reg
assessments, targeted towards HS2, HS3 and theHBB
promoter individually, and overall assessments (examining
three regions in the same test). In the latter case, the goal
to find the set of parameter values that would produce a low
aggregate total cost for the regions considered.

The optimal sets of parameter values for each utility differe
for each region examined and are listed in Table 1. The optim
sets were determined as described in the following.

For the agree utility, values of the parameterl (required
minimum region length) over the range 3–25 were tested
values ofp (percent identity threshold) ranging from 10 to
100% in increments of 1%. The number of false positives a
false negatives varied monotonically withp, as the method
achieved smaller coverage with increasingp values. Tests were
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run separately for the gap-inclusive (mode = G) and gap-
exclusive (mode = X) cases.

The infoconutility was tested with values of the parameterl
over the range 3–25 and values ofa (anchor value or score
adjustment parameter) ranging from 0 to 2.0 in increments of
0.001. The maximum information content for a column in the
alignment ofβ-globin gene clusters is 1.65, and thus 2.0 is a
reasonable value for the maximum anchor. Asa became larger,
the number of false positives decreased and the number of false
negatives increased, as the regions obtained for largera values
were included in those obtained for smaller values. For each
value of l, we partitioned the range [0,2.0] of possible score
adjustment values into intervals so that within each interval the
number of false negatives and the number of false positives did
not vary. Then we selected the besta interval for every length
l and the best overall pair of values fora andl.

Thephylogenutility was tested for values of the parameterl
over the range 3–25 and for a range of values ofa (a user-
specified fixed anchor value). The valuea was varied over the
range 0–4, which is the maximum phylogenetic distance for an
alignment of five sequences, in increments of 0.001. The
number of false positives increased and the number of false

negatives decreased asa became larger. As before, a partition
of the range ofa values was produced for each value ofl and
the besta intervals and best overall (a,l) pair were determined
according to the cost criterion.

For the utilitieskkno and kunk, the number of mismatches
allowed,k, was fixed at 1 and the parameterl was varied from
3 to 25.

RESULTS

Rationale for the five methods

Column agreement.Detection of conserved blocks is straight
forward if no sequence variations are allowed in the criteri
for ‘conserved’. One simply finds all blocks composed of
string of invariant columns of a designated minimum lengt
Although useful in some cases, this approach can miss so
important protein-binding segments (Fig. 2A). For examp
consider the underlined sequence AGATAG at position 74
in this part of HS3 in the humanβ-globin LCR: the protein
GATA1 can bind at this site (21), it is occupied by a proteinin
vivo (22) and this region contributes to the function of HS

Table 1.Parameter values that produce lowest costs in theHBB locus

l, minimum block length;k, number of mismatches allowed per row;HBB_pr is the promoter for theβ-globin gene. The programagreewas run
in the gap-inclusive (agreeG) or gap-exclusive (agreeX) modes; all other programs were run in the gap-exclusive mode.

Region Program l Column agreement Anchor k FP FN Cost FP max FN max

HS2 agreeG 16 60% na na 67 7 74 138 133

HS2 agreeX 13 60% na na 51 21 72 138 133

HS2 infocon 16 na 0.900 na 49 2 51 138 133

HS2 phylogen 9 na 1.300 na 61 0 61 138 133

HS2 kkno 5 na na 1 31 38 69 138 133

HS2 kunk 7 na na 1 19 51 70 138 133

HS3 agreeG 4 100% na na 15 35 50 227 73

HS3 agreeX 4 100% na na 15 35 50 227 73

HS3 infocon 7 na 1.191 na 12 37 49 227 73

HS3 phylogen 5 na 0.300 na 17 32 49 227 73

HS3 kkno 9 na na 1 25 26 51 227 73

HS3 kunk 9 na na 1 22 33 55 227 73

HBB_pr agreeG 8 80% na na 43 30 73 173 93

HBB_pr agreeX 6 80% na na 40 13 53 173 93

HBB_pr infocon 6 na 1.101 na 8 31 39 173 93

HBB_pr phylogen 6 na 0.740 na 14 23 37 173 93

HBB_pr kkno 7 na na 1 10 56 66 173 93

HBB_pr kunk 7 na na 1 13 35 48 173 93

Combined agreeG 3 100% na na 51 176 227 538 299

Combined agreeX 11 80% na na 31 184 215 538 299

Combined infocon 6 na 1.056 na 89 73 162 538 299

Combined phylogen 6 na 0.633 na 56 106 162 538 299

Combined kkno 8 na na 1 43 164 207 538 299

Combined kunk 7 na na 1 64 113 177 538 299
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(23). However, this site is not detected as conserved if one
searches for invariant blocks of length greater than 5. The
preferred binding sites for GATA1 allow for an A or T at the
first position of the WGATAR consensus sequence (24,25)
and, indeed, the galago sequence has an A→T transversion at
this position. This, plus another substitution just 3′ to the
consensus binding site in rabbit, restricts the number of
consecutive invariant columns to 5. The fact that some tran-
scription factors have comparable binding affinities for
different sequences means that one should allow limited
nucleotide substitutions in the algorithm for detecting
conserved blocks. Although this GATA1 site is detected by
restricting the length of the block to five or less, this is suffi-
ciently short that the likelihood of false positives may become
unacceptable. Also, other transcription factors, such as basic
helix–loop–helix proteins, have ambiguities in the center of

their preferred binding site CANNTG (26), which reduces th
string of invariant columns to an unacceptably short leng
Thus we developed a program, calledagree, for finding strings
of columns that meet an adjustable level of agreement. F
instance, out of the five sequences used in the alignmen
Figure 2B, we allow one mismatch in each column, i.e. requ
at least 80% agreement. This detects the highly conser
block containing GGGTGG and the GATA1 site, along wit
two other blocks. However, the block containing CATGAG i
the human sequence has a substitution in four of its
columns in the non-human species. This illustrates the conc
that this simple adjustment to allow substitutions in eve
column may be too lenient and allow the detection of an exc
sive number of false positives. Indeed, allowing a sing
mismatch per column enormously increases the number

Figure 2. Sample results from the five methods for finding conserved blocks. An alignment of the humanβ-globin LCR sequence and a few of its eutheria
homologs is shown for positions 7358–7420 (part of HS3), with boxes drawn around the conserved blocks determined by each method. Variation in the pmeters
was minimized; all blocks have a minimum length of 6 and are gap free. Hence, these parameters are not optimal for matching known functional sequsee
Fig. 4). (A) agree, column agreement 100%; (B) agree, column agreement 80%; (C) infocon, anchor value 1.174 (the average information content for the ent
alignment); (D) phylogen, anchor value 0.5; (E) kkno, k = 1; (F) kunk, k = 1.
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potentially spurious blocks detected in the 17 kb of the
β-globin LCR (5,27).

High information content.Finding blocks with high informa-
tion content (11,17) has the advantage of using a more finely
graded metric than the substantial difference between allowing
none versus one mismatch per column, and it also takes into
account the overall nucleotide composition of the sequences
being examined. Our program, calledinfocon, for detecting
blocks with high information content finds blocks of a desig-
nated minimum length whose average information content per
column exceeds a user-adjustable value or anchor value. As
shown in Figure 2C, this method finds the blocks containing
GGGTGG, which is likely a binding site for EKLF (28), and
GATA, without the additional blocks detected by 80% column
agreement.

Minimal evolutionary change.When the same substitution is
present in more than one sequence from different species in an
alignment, it could result from a mutation in the common
ancestor to those species, in which case it should be counted
only as a single alteration, or it could result from independent
mutations after the species diverged, in which case it should be
counted as multiple alterations. This argument can be incorpo-
rated into the analysis if the phylogenetic relationships among
the species being examined are known with considerable
certainty. We used a tree that groups human with galago, since
both are primates, then has lagomorphs (rabbit) diverging from
them fairly recently, preceded by the divergence of artiodactyls
(goat), with rodents (mouse) as the earliest order to diverge
from other eutherians (Fig. 1C). This phylogeny is supported
in a number of studies (29,30), although the relative order of
divergence of the lagomorph and artiodactyl lineages is still an
open issue.

Our program for finding blocks of minimal evolutionary
change based on a given phylogenetic tree, calledphylogen,
computes the minimum number of changes required to account
for the contemporary sequences and subtracts that value from a
user-specified ‘anchor value’ (see Materials and Methods for
details). Our utility then reports blocks of maximal extent
whose scores are larger than or equal to the scores of any of
their sub-blocks. In the example shown in Figure 2D,phylogen
identifies two blocks, one encompassing the GGGTGG motif
and the other capturing most of the GATA motif.

Blocks that conform to a known center.The three previous
methods compute some score for each column with no regard
for the entries in nearby columns (except for the value of
overall base composition used byinfocon). However, one
would expect the binding site for a particular protein to vary in
a limited number of positions between species, since proteins
will often bind to several similar sequences. Thus one would
like to find blocks in which each row differs from the preferred
binding site in no more thank positions per row, regardless of
the columns at which these differences occur. For this and the
next method, we will examine the cases fork = 1, but this is an
adjustable parameter. The preferred binding site may or may
not be known and thus we have developed tools to find blocks
of sequences that conform withink mismatches to either a
known or unknown (see next section) comparator sequence.
The sequence to which the individual rows are compared is

called the center sequence. The application of the program
finding blocks conforming to a known center (calledkkno) to
search for blocks that differ in only one mismatch per row fro
the human sequence is illustrated in Figure 2E. The bloc
containing GGGTGG and GATA motifs are captured. One
the ‘extra’ blocks found by the 80% agreement approach
Figure 2B is also found here, but the block just 3′ to the GATA
motif is not detected since it contains more than one differen
in the goat sequence.

Blocks that conform to an unknown center.Often the actual
proteins binding to a particular site or even the preferr
binding site for characterized proteins are not known, i.e. t
desired center sequence is unknown prior to the analysis.
kunkprogram will identify blocks that differ by no more thank
mismatches from an a priori unknown center sequence (3
Effectively, it tries to find a sequence of designated minimu
length such that each row of the block differs at no more thak
positions from it. Of course, after the analysis the center
known and can be reported to the user. For the align
sequences analyzed in Figure 2F, this approach includes
additional column in the block containing GGGTGG. All th
species except human have a T in this initial column of t
block and thus the center sequence will be chosen with a T
this position.

Comparative evaluation of the five methods

The actual results of analysis by each method are determi
by the choice of parameters. Some adjustable parameters
common to all methods, such as the minimum length of t
block (l), the number of sequences that must be active a
whether gaps can be included in the block (gap-inclusi
versus gap-free blocks). Other parameters apply solely t
particular method, such as the level of column agreement
agree. The user can adjust each of these parameters, so
each method can return a wide spectrum of results for a
given alignment, ranging from very few columns to nearly a
columns. Consequently, the sets of possible results from
five methods show considerable overlap.

Thus the choice of parameter values is a key determinan
the efficacy of each method. To ‘calibrate’ the programs, w
initially compared their output with a set of known functiona
sequences from three intensively studied regulatory regions
the β-globin gene cluster: HS2 and HS3 in the LCR and th
HBBpromoter. Using this set of experimentally identified site
as a standard, we adjusted each program’s parameters to m
its output match the desired set as closely as possible by m
mizing the cost, which is the sum of the false positives a
false negatives it reported.

For example, the results of the optimization forinfocon’s
anchor value are shown in Figure 3. The regions encompass
HS2, HS3 and theHBBpromoter were examined by increasin
the anchor value in small increments over a wide rang
holding the minimum length constant at the best value for
particular region. The resulting columns for each anchor va
were compared to the reference set of known function
sequences (see below). A clear minimum cost can be seen
certain anchor value for each of the three regions. Intere
ingly, a slightly different anchor value and a different minima
cost is obtained for each region.
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Parameter calibration using HS2.The core of HS2 has been
analyzed byin vivo footprints (32–35), effects of mutations
(36–38) andin vitro protein binding (39,40). Many other
papers have been published on this subject, but the cited ones
cover all the demonstrated functional regions within the core
of HS2.

The outputs for each utility, at parameter values that produce
the closest match to the set of functional sites (Table 1), are
plotted in Figure 4A. All of the programs return the best-
characterized functional sites, including the MAREs (binding
sites for NFE2 and related proteins), one of the GATA motifs,
an invariant E box (including position 11390) and a GGGTG
motif. Four of the five tools return at least part of every func-
tional region. The most comprehensive coverage was obtained
by infocon and phylogen, which produced almost identical
output with these optimized parameters. These two programs
produced the lowest cost results as well (Table 1). Thekunk
program did not identify two of the functional regions (one of
the GATA motifs and the E box at 11450). Optimized results
from the programagreehad the highest costs, in both the gap-
inclusive (agreeG) and gap-exclusive (agreeX) modes.

The two methods based on comparisons of rows to a center
sequence,kkno (with human center sequence) andkunk,
returned conserved blocks of shorter length than the other
methods. For instance, the upstream functional region extends
from 11276 to 11304, but only a short segment of that is iden-
tified by eitherkknoor kunk. Perhaps the rest of the functional
region, which is found byagree, infocon and phylogen, is
involved in some aspect of regulation that is not well modeled
by our current expectations for protein-binding sites.

Some regions were selected as conserved by all of the
methods but have not been characterized functionally to date.
For example, part or all of a 23 bp fragment located at positions
11424–11446 in the alignment is returned by all the methods.
The fact that several tools select this region independently
makes it an excellent candidate for experimental analysis to
determine whether it is indeed functional.

Parameter calibration using HS3.HS3 is associated more
with opening a chromatin domain than with enhanceme
(21,41–44) and thus it may show a different pattern of cons

Figure 3. A typical calibration curve, showing the costs of results returned by
infoconwhile varying the anchor value. The anchor value was varied over the
range 0–2 in increments of 0.001, holding the minimum lengthl constant at the
best value for each region. Each line has 2000 data points.

Figure 4. Graphs of the positions of blocks identified by the five program
after calibration of parameters against known functional regions in theβ-
globin gene cluster. The positions shown experimentally to be functional
marked on the line so indicated; boxes are labeled with sequence motif
other identifiers. Additional lines show the positions of blocks found by ea
method. The parameter values are listed in Table 1. The programagreewas run
in the gap-inclusive (agreeG) or gap-exclusive (agreeX) modes; all other pro-
grams were run in the gap-exclusive mode.
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vation than the HS2 enhancer. We calibrated the results of the
five methods against thein vivo footprints for HS3 (22),
adjusted to include the consensus binding sites for proteins
implicated as acting at these sites. Other functional data on
HS3, such as mutation results andin vitro footprints, covered
such extensive regions of the HS3 core that they were not
effective in defining useful parameters for our tools.

The results summarized in Figure 4B show remarkably
consistent results for all five methods. Likewise, the associated
costs of the optimized results of all methods were very close
(Table 1). All of the methods detected the MARE, three GATA
motifs and one CACC motif (labeled EKRE) that is likely a
response element for EKLF (28). In addition,agree, phylogen
andkknodetected a fourth GATA motif. None of the methods
returned the GATA motif centered at 7250, a putative EKRE
centered at 7284, the TATA motif or the two isolated nucleo-
tides detected byin vivo footprinting. All of these latter func-
tional sites are found only in the human sequence (see
alignments at http://globin.cse.psu.edu or in ref. 5) and thus
would not be expected to be identified by tools seeking
conserved sequences.

The minimal evolutionary change approach,phylogen,
performed very similarly toagreeand kkno in this example
(Fig. 4B), whereasphylogenproduced results very similar to
infoconin the analysis of HS2 (Fig. 4A).

Bothagreeandphylogendetected a block between 7462 and
7469 (GCATTTTT in the human sequence) that was not exam-
ined in thein vivo footprinting or mutagenesis studies. In fact,
it lies just 3′ to the restriction endonuclease cleavage site used
in defining the minimal core for HS3 (21). It is clearly
conserved, with the CATTTT being invariant in the five
species analyzed (hence it would be detected bykknoandkunk
with l = 6). DNA fragments containing this sequence bindin
vitro to YY1, GATA1, NFE2, Oct1 and an unidentified protein
(45). This is an example of a conserved block warranting
further functional study.

Parameter calibration using the HBB promoter.It is possible
that promoters might show different patterns of sequence
conservation than enhancers or other regulatory elements, so
the five methods were also calibrated against the promoter for
HBB. This promoter is among the most intensively studied for
any mammalian gene, including considerable data from natu-
rally occurring thalassemia mutations (46), close to saturation
mutagenesisin vitro (47–51),in vitro footprints (52),in vivo
footprints (34) and analysis of specific activator proteins such
as EKLF (53). A summary of the functional sites reported in
these studies is shown in Figure 4C, along with the positions
detected as conserved by each of the methods at their optimal
parameter settings.

In the HBB promoter, each of the methods produces a
distinctive set of results, in contrast to the rather homogeneous
results seen for HS2 and HS3. All methods detect four of the
functional regions, i.e. EKRE, CCAAT, part of the direct
repeat element (DRE) and the ATA motif (recognized by TBP/
TFIID). Also, other important motifs, such as the response
element for NF1, BB1 and the initiator, are detected by most
but not all methods. The utilityagree in the gap-exclusive
mode detected at least part of all functional regions, but it also
detected two additional regions not implicated in function
(centered around 64595 and 64605). All the other methods

missed the TCATC motif, which is conserved in most speci
but has a 3 nt substitution in the galago sequence. Thus in o
for other methods to detect it, the parameters would have to
relaxed from the optimal settings. The programsinfocon and
phylogenproduced results with the lowest costs (Table 1).

The utility kunk performed better thankkno at the HBB
promoter, whereaskkno produced better results thankunk at
HS2 and HS3. We had expected thatkunk’s flexibility to
choose the center sequence would make it the better t
thereby justifying its added complexity. It appears that this w
be true for some but not all regions.

Neitherkunk, kknonor infocondetected the initiator region,
encompassing the nucleotide encoding the capped nucleo
of the mRNA. Since the initiator is recognized by componen
of TFIID (54) that may be directed to this segment of the DN
template by binding to a different site, i.e. the TATA box, thi
region may not be easily detectable by methods based
expectations for direct protein binding.

Compared to the results for HS2 and HS3, the pattern
conserved sequences makes a less compelling case for a
tional functional regions in theHBB promoter. This doubtless
reflects the very intensive experimental analysis of th
promoter over the course of 20 years and the variety of te
niques used. Despite this, bothkknoandkunkreveal an addi-
tional conserved block centered around 64585, suggesting
even at this promoter the identification of functional region
may not be complete.

Application of the methods to a control region in eubacteria
We also wished to test the efficacy of these tools in a differe
gene system and set of organisms. The complete sequenc
E.coliK-12 has been determined (15) and recently the genom
sequences of four related eubacteria, i.e. threeSalmonellaspp.
andK.pneumonia, have been determined at ~2-fold shot-gu
coverage (see Materials and Methods for ftp sites). Th
presents an opportunity to explore the efficacy of these to
for different genes. The estimated time of divergence of the
eubacteria is ~100 million years ago (55), close to the estima
for the divergence of eutherian mammals (29). The interge
region betweenaraBAD and araC was chosen as a well-
studied regulatory region, with two oppositely orientedσ70
promoters and several experimentally defined binding sites
AraC and CRP (56–58). Protein coding regions were exclud
from the analysis.

A reference set of functional sequences was selected ba
on information in RegulonDB (59,60) and the Genome
section of Entrez at NCBI (61), which have been underlined
Figure 5. We then applied the five methods for finding high
conserved sequences to this region, optimizing the parame
to find the closest matches to the reference set of sites. All
methods worked well after optimization (Table 2). Indeed, th
percentage of errors (or cost) to total length of the regi
(FPmax+FNmax) is only ~10%, whereas it was higher for t
analysis of theHBB locus (Table 1). As expected,phylogenhas
one of the best scores. The three species from the same g
are more likely to share a sequence distinctive from that
other genera, andphylogen would count anySalmonella-
specific nucleotides as a single change. As illustrated in Fig
5, all the functional regions except the –35 box foraraBADare
captured and all the false positives are adjacent to known fu
tional regions.
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The optimal parameters for this region differ from those for
theβ-globin LCR or theHBBpromoter (compare Tables 1 and
2). The reasons for these differences have not been elucidated,
but they could have more to do with the particular region than
any differences between mammalian versus bacterial control
sequences. For instance, the 5′-untranslated region ofaraBAD
is considerably more conserved than is the comparable region
of araC (Fig. 5), but those invariant positions with no assigned
function in the databases are assigned as false positives in the
cost function. Further analysis could reveal function in these
regions. In general, distinct optimal parameters are found for
different regulatory regions.

Effects of allowing gaps

While the gap-free mode is useful for providing high resolu-
tion views, e.g. of potential binding sites for proteins, it cannot

find regions where variations among the sequences are du
insertions or deletions rather than nucleotide substitutio
This becomes a significant concern when one acknowled
that sequencing errors do occur, including misreading t
number of nucleotides in a string (e.g. GG instead of GGG
This of course produces gaps in the alignment. Allowing ga
to appear in conserved blocks thus makes our tools m
tolerant of sequencing errors. When compared to the res
with the gap-exclusive mode while maintaining other param
eters the same, the use of the gap-inclusive mode will fu
clusters of neighboring gap-free blocks, which may make t
potential functional regions more obvious. Even when usi
optimal parameters for theagreeutility in the gap-inclusive
(agreeG) and gap-exclusive (agreeX) modes, longer runs of
conserved columns were detected in the gap-inclusive m
for HS2 and the BB1 site of theHBBpromoter (Fig. 4A and C).

Figure 5. Results of usingphylogenwith optimized parameters to find highly conserved blocks in the control region of the bacterialaraBADandaraC operons.
The known functional sequences listed in RegulonDB and in Entrez Genomes are underlined and labeled above the set of aligned sequences. AraC anfer
to binding sites for these proteins, and the –10 motif of thearaBADpromoter and the–35 motifs of both promoters are underlined. Boxes are drawn around
blocks identified byphylogen. Species names are abbreviated as follows: eco,E.coli; stm,S.typhimurium; sty,S.typhi; spa,S.paratyphiA; kpn, K.pneumonia.

Table 2.Parameter values that produce lowest costs in the bacterialaraBAD–araC regulatory region

Program l Column agreement Anchor k FP FN Cost FP max FN max

agreeG 8 100% na na 7 26 33 240 98

agreeX 8 100% na na 7 26 33 240 98

infocon 11 na 1.230 na 11 20 31 240 98

phylogen 8 na 0.200 na 8 22 30 240 98

kkno 12 na na 1 21 9 30 240 98

kunk 16 na na 1 27 8 35 240 98
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DISCUSSION

One goal of bioinformatics is to build tools that can identify
regions with a high level of similarity among homologous
sequences and thereby find strong candidates for functional
sites. Since the level of similarity depends on the species
examined and can vary among different genes and even
different regions within genes and genomic segments, these
tools must be flexible enough to support varying cut-offs along
the similarity continuum. Ideally, the tools would be calibrated
separately for each region of interest to find settings that
produce good results when compared with the set of sites
known to be functional. However, in most cases one will
search for conserved blocks in previously unstudied regions to
find strong candidates for functional sequences. Thus calibra-
tion of the computer tools is impossible in such regions, but the
results obtained here for four regulatory elements in both
mammals and bacteria could be a useful guide for initial
studies. Of course, computational methods will never provide
definite proof of evolutionary selection: that is a biological
question. The challenge on the experimental end of functional
genomics is to hypothesize reasonable functions for sequence
regions that can be tested in the laboratory.

Our analysis of different methods was prompted by the real-
ization that no single definition of conservation is adequate to
cover all possible purposes. Thus we explored a set of
approaches, each based on a different rationale. Full column
agreement can be used to find the most highly conserved
segments, but it is too stringent to find all binding sites. Blocks
with minimal evolutionary change or high information content
can detect known functional regions effectively by allowing
some mismatches in the alignment. The two row-based utilities
search for close matches to ‘center’ sequences that are either
specified or unknown a priori. All five of the methods can
return a set of blocks that is close to the set of experimentally
determined functional sequences in the four regions that we
investigated, provided one uses optimal parameters. In general,
highly conserved motifs are detected by each of the methods,
albeit with slightly differing end-points. For HS2 and HS3, the
methods revealed some consistently conserved blocks that did
not match any of the known functional sites and therefore may
be deserving of further functional study. Conversely, for all
four regulatory regions, some segments that are known to
interact with proteins are not strongly conserved among the
species we investigated.

No one method appeared clearly superior to the others and,
indeed, the fact that these independent approaches produce
such similar results strengthens the case for their validity. The
goals and viewpoint of the investigator can dictate choice
among the various methods. For example, users studying
protein binding may choose the row-based tools, those inter-
ested in entropy may wish to use information content and those
with a phylogenetic perspective may prefer the approach based
on evolutionary change. Easy availability of these utilities
should encourage use of and comparison among multiple
approaches.

However, it would be premature to conclude that the five
approaches do not differ significantly in their effectiveness.
The alignments of the four regulatory regions chosen for the
calibration study are clearly well conserved and have been
recognized as such by a number of approaches, including

visual inspection. The four regions examined in this study we
chosen because of the substantial body of experimental res
against which we could calibrate the parameters for o
programs. However, the advantages for each individu
program may become clearer as they are applied to additio
functional regions.

Obtaining good results withagree, infocon and phylogen
required calibration against the data set of known function
regions, since it is very difficult a priori to predict the bes
values for the relevant parameters, such as anchor values.
optimal parameter values foragree differed considerably
among the regions used for calibration. The optimal values
the minimum lengthl ranged from 3 to 16 for the different
regions and the column agreement ranged from 60 to 10
(Tables 1 and 2). There is no obvious rationale for the
changes in the optimal parameter values. The progra
infoconandphylogeninvariably returned results with the bes
scores (lowest costs in Table 1), but again it is difficult t
predict a priori the optimal anchor value. The optimal anch
value varied considerably for different regions analyzed
phylogen, but it is more consistent forinfocon, ranging only
from 0.9 to 1.2. Thus one may expect, based on our calib
tions, that usinginfoconwith l = 6 anda = 1 will return good
results in many cases. Alternatively, one can choose the t
parameters for bothkknoandkunkbased on objective expecta
tions. For instance, an investigator may be interested in pot
tial binding sites of minimum length 10, but may be willing to
accept only 1 mismatch per row. Thus the parametersl = 10
andk = 1 can be chosen without calibration. The sequences
many genomic regions will soon be available, but with n
previously determined functional regions available for calibr
tion. In these cases, the predictability of parameter values
the programskknoandkunkwill be advantageous.

Further development of these approaches could impro
their power or applicability. For instance, any of the utilitie
could be linked to a transcription factor database to allow o
to search for all blocks whose consensus/ancestral/ce
sequence matches a known binding site. This would be m
effective for the set of transcription factors with well-know
binding sites. Thephylogenutility could be made more sophis-
ticated by providing a scoring scheme that discriminat
among transitions, transversions and insertions/deletions.
approach of first making an alignment and then searching
highly conserved sequences has some limitations. Obviou
the efficacy of the tools depends on the quality of the alig
ment, but the multiple alignment program does not guaran
an optimal solution. Hence, it is possible that some importa
motifs could be missed. Naturally, the same ideas could
used to evaluate the procedure that generates the alignme
An alternative approach would be to combine the identificati
of interesting motifs with the alignment procedure.

While a careful analysis has characterized pairwise alig
ments of protein coding regions between human and rod
sequences (62), alignments of functional non-coding genom
regions are less well understood. Here we have taken a ste
that direction by studying experimentally confirmed regulato
elements in the context of a fixed multiple alignment o
genomic sequence data, both from several orders of mamm
and several genera of bacteria. Our study suggests that a w
variety of approaches effectively identify conserved regio
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and, when optimally calibrated, their results are similar in
practice.

AVAILABILITY

An interface for using these tools to find conserved blocks
within the aligned mammalianβ-globin gene cluster, as well as
additional material including source code for the programs, is
located at the Globin Gene Server (http://globin.cse.psu.edu/ )
under the section on Multiple Alignments.
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