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Working with a response: 
 
Beside expression data for N genes on T “conditions” (the X’s), we 
have one or more other quantities recorded on conditions, say Y’s. 
 
Thus the data looks like 
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In our previous discussion, we thought of: 
 

•  N observations (the genes’ expression levels), for each of 
•  T variables (the “conditions”) 

 
Now, the perspective is reversed. We think of: 
 

•  T observations (the “conditions”; usually cell samples from 
different individuals/organisms), for each of 

•  N explanatory variables (the gene’s expression levels), plus 
•  K response variables 
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This is a regression setting : we try to explain/predict a response 
 

•  through (focus on creating a good prediction mechanism), 
and 

•  in reference to (focus on evaluating and understanding the 
roles of the variables; which ones are important? How? 

 
a collection of explanatory variables; the genes’ expression levels. 
 
 
 
The most common responses are categorical variables expressing 
a classification (binary or multiple) of the samples – e.g. 
classification of a given cancer.  
 
Note: Many approaches to classification exist, but here we focus 
on this regression-oriented logic. 
 
Continuous responses are possible, too. For example: 
 

•  Survival time 
•  Continuous measurements of response to a treatment 
•  Continuous phenotypic trait 

 
 
 
What distinguishes our setting from standard regression settings is 
that the # of explanatory variables is extremely high, and orders of 
magnitude higher than the # of observations: N > > T. 
 
We have a “variable under-resolution” problem that makes 
standard regression techniques ill-posed. 
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Regression setting (somewhat unorthodox indexing!) 
 
Y   response 
 
X1…XN  collection of explanatory variables or predictors 
 
have T independent observations from (Y, X1…XN) … or T fixed 
levels of  X1…XN  and independent observations of Y on each of 
them. 
 
Within the context of (generalized) linear models, one focuses the 
dependence analysis on E(Y| X1…XN) and introduces: 
 

1. A distributional assumption, where the distribution is 
completely specified by the mean 

 
Y| X1…XN  ~  Dist( E(Y| X1…XN) ) 

 
2. A link function, connecting the mean and a linear expression 

in a certain number of functions of the predictors; terms 
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g invertible (and differentiable, for ML purposes)  
one of the f’s is a const., corresponding parameter is the intercept 
other parameters express slopes of the terms. 
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Example 1: Y continuous 
 
distribution, normal:  Y| X1…XN  ~  N( E(Y| X1…XN), σ2) 
 
possibly σ2 = fct of E(Y| X1…XN) 
 
link, identity: FXXYE N ')...|( 1 γ=  

 
Example 2: Y binary 
 
Distribution, Bernoulli:  Y| X1…XN  ~  Ber( E(Y| X1…XN) ) 
 
Recall  E(Y| X1…XN)=Pr(Y=1)  

var(Y| X1…XN)= E(Y| X1…XN) ( 1- E(Y| X1…XN) )  
 
link 2.a, logit:  
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link 2.b, probit: 
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Parameter estimates give sign and size of each term’s contribution, 
in the context of all other terms in the model. 
 
Also, can do inference (evaluate standard errors, produce 
confidence intervals for parameters and prediction intervals for the 
response, test for single parameters being = 0, or for groups of 
them being = 0 – comparison of nested models) 
 
For example 1, ML equivalent to least squares (or appropriately 
weighted least squares). For example 2, ML. 
 
ML allows Bayesian extension, putting priors on the parameter 
vector. 
 
But in order for estimation and inference to be well posed, we need 
the F-data to span p dimensions or more. 
 
So the issues are: 
 
How to derive the terms to be used, dimension reduction:  

variable selection among original predictors 
selection of linear combinations of the original predictors 

 
Model building, forming terms:  
manageable when dealing with a very limited number of variables 
 
Going back, from term parameter estimates and inferences to the 
original predictors: which ones matter and how (read: selecting 
genes). 
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Traditional approach:  
 
Dimension reduction: variable selection in the context of a starting 
model including all original predictors without transformation 
 

)'()...|( 1 XgXXYE N β=  
 
Some of the slopes may be negligible because 
 

•  The X’s are linearly related, so they “duplicate” a certain 
amount of information on one another, and thus on Y, and/or 

•  Some X’s are irrelevant for the response under the chosen 
model 

 
… go down to a few X’s, and build terms on them. 
 
e.g.      X1…XN  X1 , X2    
 

 
F1=X1 , F2=X1

2, F3 = X1X2 
    
   Update: )'()...|( 1 FgXXYE N γ=  
 
Linear dependencies among the X’s complicate variable selection 
 

•  Order matters when trying to apply sequential methods 
•  Loosely speaking, the reliability of the slope estimates is 

lower the stronger the linear dependencies 
•  In the extreme case, if some X’s are exact linear functions of 

other X’s, the slope estimates are not uniquely defined 
 
The latter is exactly the case we face… we cannot just follow this 
approach. 
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We have a very bad case of unavoidable multicollinearity due to 
the fact that N > > T. 
 
“Dimension-redundancy” i.e “variable under-resolution” problem.  
 
We have just T points in the N-dimensional space of the X’s.  
 
No matter how high N is, these points will live at most in a  
(T+1)-dimensional subspace 
T-dimensional affine subspace   
 
So our information is only at most (T+1)-dimensional, or at most 
T-dimensional if centering doesn’t matter. 
 
We have to eliminate this problem before we can do anything else. 
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Stage 1: X-based dimension reduction  
 
We need to eliminate dimension redundancy, and reduce the data to what it 
“really spans” … or less.  
 
Singular value decomposition of X  
Extraction of principal components (idem, modulo centering of the data) 
 
No < T  linear combinations, new variables, “building block” patterns. 
 
No can be the exact rank, but also the “significant” rank, if we decide to 
neglect directions corresponding to small but non-zero eigenvalues. 
 
We now pass to the new data matrix (No x T) 
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(the row of Y’s at the bottom stays the same)  
 
At this point, we could apply in principle standard methods for variable 
selection. But No may still be quite large; i.e. not enough smaller than T to 
confidently use these methods. We may thus decide to go another way, and 
select linear combinations of the W’s, instead of a subset of them. 
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Stage 2: dimension reduction in relation to Y  
 
Suppose Y is categorical in h=1…H categories.  
 
If Y is continuous, can always discretize it through slicing. 
 
Let’s partition the data, and the covariance structure of the W’s, according to 
Y (tildae indicate column vectors of the W matrix) 
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invertible 

(Average) within covarianceDecomposition 
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“Standardize” the between covariance structure with the within: 
 
Discriminant Analysis: 
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…say one restricts attention to the first d discriminant directions.  
 
This corresponds to the rank of M , if neglecting only dimensions 
corresponding to 0 eigenvalues, or to the “significant” rank of the 
standardized 2/12/1 −− MEE , if neglecting also directions corresponding to 
small but non-zero eigenvalues. 

Discriminant matrix, spectral decomposition

Some of the eigenvalues may be (approx) 0

Transform the eigenvectors through E to 
obtain the discriminant directions 

Between covariance structure along a 
standardized by within covariance structure 
along a … 

Share of overall explanatory power for Y 
embodied in the discriminant matrix, that is 
captured by a . 



 11

“Standardize” the between covariance structure with the overall: 
 
SIR (sliced inverse regression) Analysis: 
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…say one restricts attention to the first  d  sir directions.  
 
This corresponds again to the rank of M , or to the “significant” rank of the 
standardized 2/12/1 ~~ −−

WW SMS . 
 
 
Sir matrix: 
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Sir matrix, spectral decomposition 

Some of the eigenvalues may be (approx) 0

Transform the eigenvectors to obtain 
sir directions 

Between covariance structure along a 
standardized by overall covariance 
structure along a … 

Share of overall explanatory power for Y 
embodied in the sir matrix, that is 
captured by a . 
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Special case, H=2 (binary response) 
 
 
It is easy to show that 
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Thus, for both the discriminant and SIR analysis only one eigenvalue can be 
non-zero. We have: 
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The overall explanatory power for Y embodied in the discriminant matrix is 
a multiple of the square distance between the group means, in the E-1 metric, 

and is captured by the single discriminant direction of  )
~~

( 21
1 WWE −− . 
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The overall explanatory power for Y embodied in the SIR matrix is a 

multiple of the square distance between the group means, in the 
1~ −

WS  

metric, and is captured by the single SIR direction of  )
~~

(~
21

1 WWSW −−
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Special case, “aligned” between and within covariance structures: 
 
 
 
 
What happens if M and E admit the same spectral directions? 
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Spectral directions of overall covariance, discriminant and SIR matrix are all 
the same. 
 
 
 
The directions to surely neglect (corresponding to m’s = 0; exact rank of M) 
are the same in discriminant and SIR analysis, but eigenvalues ranking, and 
therefore directions to possibly neglect (corresponding to tail eigenvalues; 
“significant” rank of M after the two standardizations) may differ. 
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Remarks: 
 
 

1. The discriminant approach is usually employed when the partitioned 
(by Y) W-data are all elliptical-looking, with approximately the same 
covariance structure (then E is a pooled estimate of it). 

 
 

2. The SIR approach is employed when the overall W-data is elliptical-
looking, and it has a strong theoretical foundation (Theory of sufficient 
dimension reduction, more next time). 

 
 

3. Under appropriate (distributional) assumptions on W within Y-
subpopulation, or on W overall, tests can be developed to establish the 
“significant” rank of M after the two standardizations, i.e. to 
determine how many of the tail eigenvalues of the discriminant or SIR 
matrix are approximately 0, and thus how many discriminant or SIR 
directions to retain. But these tests require large samples (asymptotic 
results for SIR, more next time). 

 
 

4. CAN ALWAYS USE RANDOM PERMUTATIONS OF THE Y-
LABELS TO COMPUTE EMPIRICAL P-VALUES FOR AN 
APPROPRIATE STATISTIC (e.g. sum of tail eigenvalues). 
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Another approach based on linear covariation, when Y is continuous: 
 
 
OLS (Ordinary Least Squares); produces only one direction.  
 
 
Consider the vector of covariances between Y and the W’s, and 
“standardize” the rank 1 cross-covariance structure it represents by the 
overall covariance structure of the W’s 
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The overall explanatory power for Y embodied in the OLS matrix is a 

multiple of the square norm of the covariance vector, in the 
1~ −

WS  metric, 

and is captured by the single OLS direction of  YWW SS 1~ −
. 

 
 
See also partial least squares, to get more than one direction. 
 
 
SIR, and other sufficient dimension reduction methods work for both 
categorical and continuous variables. 

OLS matrix 
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Whatever the approach, if we retain, say d directions, we end up with the 
new-new data matrix: 
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(the row of Y’s at the bottom stays the same) 
 
These are linear combinations of linear combinations of the X’s.  
 
Either the F’s themselves, or possibly terms derived from them, will then be 
used in our prediction mechanism (regression model, or other classification 
algorithm). 
 
 
Remarks: 
 

1. In our microarray applications, we cannot stick with the original 
variables; they are simply too many for what our data actually spans. 
Even after X-based dimension reduction, an exact No may be still too 
large (too close to the number of observations, T) – too few degrees of 
freedom to apply standard procedures confidently. In any event, we 
have already broken direct interpretability passing to linear 
combinations (the W’s), so we might as well reduce further, if 
possible. 

2. Although we must eliminate dimension redundancy in the X’s, for our 
aims what’s important is not the variability structure of the X’s, but 
the dependence structure of Y on the X’s. Thus, staying with a fairly 
exact No (“conservative” X-based stage), and applying a Y-based 
second stage of dimension reduction, is preferable.  

3. On the other hand, a small No may accomplish noise reduction. 
 
 
(more on these issues next time) 
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Generalized linear model framework: 
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Prediction, for a new observation on which we know X’s, and therefore F’s, 
but not Y: 
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Note for the binary case we can “nuance” the confidence in the response 
prediction according to the estimated probability (the closer to 0 or 1 the 
estimated probability, the more confident we are in predicting class 0 or 1 
for the new observation). 
 
There are various ways to assess the performance of the model 
after its fit/estimation. Goodness of fit, diagnostics. In the case of a 
binary response, we can count misclassifications in the data we 
used to fit the model (for these we know Y) 
 

)ˆ:(# tt YYt ≠  
 
Cross-validation generalizes this idea, trying to work more conservatively 
(“against the model”; raising the bar). Split the original data, on which 
response is known, in two sets; use one to fit the model, and then predict 
response and count misclassifications on the other. Possibly, repeat on 
various splits. 
 

Y continuous

Y binary, with link (d=1) 

Fitted values/estimated 
prob’s, after estimating the 
parameters 

Y continuous

Y binary (flip a 
coin if exactly 0.5) 
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Common ways of creating the splits: 
 

•  Split the data in two groups just once (at random, but sometimes 
according to a criterion) 

•  take out 1at a time: use T-1 observations to fit, 1 to validate, repeat T 
times 

•  take out 10% at a time: split the data in 10 groups of equal size (at 
random),  use observations in 9 groups (90%) to fit, and observations 
in the remaining group (10%) to validate, repeat 10 times – of course 
could use a percentage other than 10%. 

 
 
 
 
There is nothing wrong in principle in basing our prediction mechanism on 
the F’s, but one of our aims (predict/explain in reference to the X’s) was 
exactly to identify genes that are relevant for Y: 
 
At least ex-post, we need to implement a variable/gene selection procedure! 
 
 
Idea: create a ranking of the variables/genes, and a reasonable criterion to 
decide how many of the top-ranking ones to label as relevant. 
 
Our two-stage dimension reduction gives us a straightforward way to rank 
genes. Recall that the new-new variables we identify (the F’s) do correspond 
to a d-dimensional space in the original N-dimensional one. Thus, we will 
consider how close each of the original X’s is to this subspace, which is the 
one we have selected as relevant for our response.  
 
(more on this next time) 
 
 


