
 1

Hints at other dimension reduction techniques 
 
In PCA, the aim is to find a low-dimensional (projective) 
representation of the data that preserves variability. 
 
Multi-dimensional Scaling (MDS): 
find a low-dimensional representation of the data that preserves 
“relative positioning” of the points, i.e. distances among them. 
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Not unique: Stress is invariant under translations, 
orthogonal transformations (rotations, reflections) and 
overall re-scalings (blow-shrink) of the W’s. 
(Solution for k+1 builds on solution for k.) 
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St(k) will decrease as k increases, being certainly 0 for k >= 
min{T,N-1} 
 
 
Plot and look for “negligible tails” and/or bends. 
 
 
If points are very close to a k-dimensional subspace, so that 
projecting on it does preserve distances, PCA and MDS will have 
equivalent results: lead to k (e.g. 2), and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
are the same, modulo translation, orthogonal transformation and 
overall re-scaling. 
 

W1 

W2 

W*1

W*2PCA MDS



 3

But MDS can reduce the dimension further if points are close to 
“regular” regions of a g<k dimensional manifold (embedded into a 
k-dimensional affine space) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(“regular” enough to have distances on it monotone to g-
dimensional Euclidean distances). 

PCA: k=2 
MDS: g=1 

Distances are preserved in 1 dimension 

Distances are grossly violated in any 1 dimension 

PCA: k=2 
MDS: g=2 
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MDS can also be employed to assess dimensionality and provide a 
low-dimensional graphical representation when the starting point 
of the analysis is not a cloud of points in T dimensions, but a 
collection of N objects for which one can specify a consistent 
dissimilarity matrix. 
 
 
Also, recalling that dimension reduction is NOT clustering, one 
may still want to reduce the dimension prior to clustering: 
 
•  To eliminate “artifacts” (un-wanted variation patterns)… then 

PCA may make sense, but need reasoning! 
 
•  Otherwise, MDS may present advantages, as its objective is to 

preserve distances among points (as opposed to variability: 
there is in principle no reason why interesting clustering should 
occur in linear sub-regions of large variability). 

 
 
Reference:  
 
R. Gnanadesikan: Methods for statistical data analysis of 
multivariate observations. Wiley. 
 
 
MDS is not implemented in Minitab, but it is implemented in S+. 
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Extension of MDS that allows one to capture “less-regular” low-
dimensional manifolds: 
 
J. Tenenbaum, V. De Silva, J.C. Langford (2000) 
A global geometric framework for non-linear dimensionality 
reduction. Science 290, 2319—2323. 
 
“… builds on classical MDS, but seeks to preserve the intrinsic 
geometry of the data, as captured in the geodesic manifold 
distances between all pairs of data points”. 
 
 
 
See also, based on a different principle: 
 
S.T. Roweis, L.K. Saul (2000) 
Non-linear dimensionality reduction by locally linear embedding. 
Science 290, 2323—2326. 
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Factor Analysis: 
 
Introduce a decomposition model: additive superposition of a 
structural and a structure-void term, uncorrelated to one another 
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This induces an additive decomposition of the var/cov matrix 
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The idea is that the oiX , ’s actually live in a low dimension: 
 
Span( oS )  ,   dim( oS ) = K < T  . 
 
Issue: the terms in the decomposition of the profiles and thus the 
components in the decomposition of the var/cov matrix are 
unobservable. 
 

Cross-covariances

Structural 
component

Structure-void 
component 
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Spherical structure-void var/cov component (structure: departure 
from sphericity, which involves both correlations and relative 
spreads along the original coordinate axes) 
 
 
 

0, 22 ≥= σσε TIS  
 
 
 
 
 
 
 
 
 
 
Diagonal structure-void var/cov component  -- with respect to the 
original coordinate axes (structure: departure from diagonality in 
the original coordinate basis, which involves correlations) 
 
 

TjDS jj ...1,0,)( 22 =≥= σσε  
 
 
 
 
 
 
 
 
 
 
 
This is the foundation of Factor Analysis 
 

T=2
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Going one step further: Span( oS ) in bi-jection with Rk, through a 
choice of orthonormal basis, and write 
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Coordinates in which the iF ’s are expressed: latent factors 
K values in each specific iF  : factor scores for the ith observation  
Entries in ∆  : loadings: 
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Latent factors (choice of orthonormal basis), factor scores for each 
observation and loadings are not unique, : our decomposition is 
invariant under rotations in K dimensions (changing orthonormal 
basis): 
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How the first factor “loads into” the structural 
part of the first original coordinate 
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Decomposition of original coordinates’ variances: 
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Also, in terms of spectral decompositions 
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Because of non-observability, the issue is now how to estimate the 
components of S, and chose the dimension (K) and an appropriate 
basis to express the (non-unique) loadings. 
 
Reference: R. Gnanadesikan 
Implemented in Minitab. 

“Communality” 
Specific variance (the same for 
all j’s in the spherical case) 

Tail T-K eigenval’s of S equal to 2σ . 
Eigendirections of oS compatible with 
those of S . 

Eigendirections of oS  not necessarily 
compatible with those of S . 
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Projection pursuit and tours:  
 
Exploratory approach. 
 
One, or a whole sequence, of 2D projections chosen according to a 
criterion (e.g. departures from normality; collection of local 
maxima). 
 
Looking at the high-dimensional data cloud from a sequence of 
“viewpoints” that ought to be structurally informative. 
 
A couple of references: 
 
C. Posse (1995). Tools for two-dimensional exploratory projection 
pursuit. JCGS, v.4 n.2.  
 
A. Buja, Cook D., Swayne D.F. (1996) Interactive high 
dimensional data visualization. JCGS, v.5 n. 1. 1996 
 
(see “historic” references therein) 


