Fundamental Methods for HMMs

In what follows, consider a fixed hidden Markov model, \mathcal{M} , with start state s_0 and n other states s_1, s_2, \ldots, s_n . Let $t_{j,k}$ denote the transition probability of going from s_j to s_k , and let $e_j(a)$ be the emission probability of symbol a in state s_j . (State s_0 doesn't emit symbols.) Thus $\sum_{k=1}^n t_{j,k} = 1$ for $j = 0, 1, \ldots, n$, while if j > 0, then $\sum_a e_j(a) = 1$, summing over all possible observed symbols a. Also, fix an observed sequence $x = x_1 x_2 \ldots x_m$ consisting of m symbols.

Consider a path π from s_0 and of length m (the same length as x). That is, π is a connected chain of m edges in \mathcal{M} that starts at s_0 . Let $P(x|\pi)$ denote the conditional probability of x given π . Then $P(x|\pi)$ is the product of the probabilities of emitting x_i at the ith state along π for all i with $1 \leq i \leq m$. More succinctly, $P(x|\pi) = \prod_{i=1}^m e_{p_i}(x_i)$, where s_{p_i} is the ith state on π . Also, let $P(x,\pi)$ denote the joint probability of sequence x and path π , i.e., the probability of both picking path π and generating x along that path. The probability of picking π is $P(\pi) = \prod_{i=1}^m t_{p_{i-1},p_i}$ (with p_i as above), and $P(x,\pi) = P(\pi)P(x|\pi)$.

Example. Suppose the loaded die emits 1 with probability 0.5, and emits 2 through 6 each with probability 0.1. Suppose that the F-to-L (fair to loaded) transition has probability 0.1 and L-to-F has probability 0.2. Finally, with probability 0.9 we start with the fair die. Consider the observed sequence x = 1214641 and the hidden path $\pi = \text{LFFFFFL}$. Then $P(x|\pi) = (0.5)(1/6)^5(0.5)$, $P(\pi) = (0.1)(0.2)(0.9)^4(0.1)$, and $P(x,\pi) = P(x|\pi)P(\pi)$. Note that in this model with these probabilities, $P(x,\pi) > 0$ whenever x and π have the same length.

Computing the probability that a given sequence is generated by the model. Let P(x) denote the probability of generating x from \mathcal{M} . Thus P(x) is $\sum_{\pi} P(x,\pi)$, summing over all paths π from s_0 . (Only paths with exactly m edges contribute to the sum.) P(x) can be computed by the so-called Forward algorithm, which is quite similar to the dynamic programming algorithm for aligning two sequences. For $i=0,1,\ldots,m$ (denoting a position in x) and $j=0,1,\ldots,n$ (denoting a state in \mathcal{M}), define $f_j(i)$ to be $\sum_p P(x_1x_2\ldots x_i,p)$ over all paths p from s_0 to s_j . In other words, $f_j(i)$ is the probability of generating $x_1x_2\ldots x_i$ and ending in state s_j . You can think of the f-values as forming a table with m+1 rows and n+1 columns. We will fill in the table by rows.

Row 0 consists of values $f_j(0)$, corresponding to paths from s_0 to s_j that "spell out" the first 0 symbols of x. Clearly $f_0(0) = 1$, and if j > 0 then $f_j(0) = 0$. For any later row, say row i, suppose that the f-values have been determined for row i - 1, and fix s_j . Then $x_1x_2...x_i$ is generated by a path ending at s_j if and only if some state s_k statisfies (1) $x_1x_2...x_{i-1}$ is generated ending in s_k (probability $f_k(i-1)$, (2) the transition from s_k to s_j is chosen (probability $t_{k,j}$), and (3) t_j is emitted (probability t_j). Summing over all possible t_j , we get the recurrence relation t_j (i) t_j and t_j representation of t_j representation t_j representation t

$$f_0(0) \leftarrow 1; \ f_j(0) \leftarrow 0 \text{ for } j = 1, 2, \dots, n$$
for $i = 1$ to m do
$$for \ j = 1 \text{ to } n \text{ do}$$

$$f_j(i) \leftarrow e_j(x_i) \sum_{k=0}^n t_{k,j} f_k(i-1)$$

$$P(x) \leftarrow \sum_{j=1}^n f_j(m)$$

The Forward algorithm for HMMs.

Computing the most probable state path generating a given observed sequence. Given observed sequence x, we want the path π that maximizes $P(x,\pi)$. (This corresponds to GenScan's prediction of the most probably set of genes in a given genomic sequence.) Of course, several paths may tie for the most probable path, in which case the method will pick one of them. In essence, an optimal path can be found simply by replacing the sum operation in the Forward algorithm by a maximization. To see that this is justified, we reason as follows. For $i=0,1,\ldots,m$ and $j=0,1,\ldots,n$, define $v_j(i)$ to be the maximum $P(x_1x_2\ldots x_i,p)$ over all paths p from s_0 to s_j . If p is restricted so that its last edge starts at s_k , then the best we can do is to optimally spell $x_1x_2\ldots x_{i-1}$ with a path ending at s_k (probability $v_k(i-1)$), add the edge to s_j (probability $t_{k,j}$), and emit t_i (probability t_i). This recurrence relation immediately gives the following algorithm for computing the number $\max_{\pi} P(x,\pi)$.

```
v_0(0) \leftarrow 1; \ v_j(0) \leftarrow 0 \text{ for } j = 1, 2, \dots, n
for i = 1 to m do
for j = 1 to n do
v_j(i) \leftarrow e_j(x_i) \max_{k=0}^n t_{k,j} v_k(i-1)
\max_{\pi} P(x, \pi) \text{ is } \max_{j=0}^n v_j(m)
```

The Viterbi algorithm for HMMs.

To explicitly determine an optimizing path π , one can save back-pointers. That is, each time a $v_j(i)$ is computed, one can determine and save $backpointer_j(i)$, defined as the k (or one of them, in case of a tie) such that s_k immediately precedes s_j on an optimal path spelling $x_1x_2...x_i$ and ending at s_j (i.e., the k that maximizes the expression used to define $v_j(i)$ in the above pseudo-code). These edges can be used to trace out an optimal path in reverse order.

Computing the probability that a given observed symbol was generated by a given state. Fix i where $1 \le i \le m$, which selects element x_i of the observed sequence x. For some or all states s_j of \mathcal{M} we want to compute the probability that x_i is emitted in s_j , given that x_j is emitted by the full path. This value can be denoted as $P(\pi_i = s_j | x)$, using π_i to denote the ith state on π . It is analogous to the probability that a certain genomic segment corresponds to an exon state of GenScan. More precisely, for fixed j we want to sum $P(x, \pi)$ over all paths π whose ith state is s_j . Dividing this value by P(x) gives $P(\pi_i = s_j | x)$.

Recall that $f_j(i)$, as computed by the Forward algorithm, is the probability of emitting $x_1x_2...x_i$ and ending in state s_j (i.e., it equals $\sum P(x_1x_2...x_i,p)$ over all paths p from s_0 to s_j). We need to multiply this by $b_j(i)$, defined as the probability of emitting $x_{i+1}x_{i+2}...x_m$, given s_j as the starting point (and not emitting anything until after a state transition). In symbols, $b_j(i) = P(x_{i+1}x_{i+2}...x_m|\pi_i = s_j)$. The values $b_j(h)$ can be computed in backwards order (i.e., decreasing h) beginning with h = m. The desired recurrence relation follows from the observation that $b_j(h)$ is the sum over all s_k of the probability of a transition from s_j to s_k (namely $t_{j,k}$) times the probability of emitting t_{h+1} in state t_h (namely t_h) times the probability of emitting t_h) times the probability of emitting t_h).

```
Compute P(x) and values f_j(i) for all j using the Forward algorithm. b_j(m) \leftarrow 1 for j=1,2,\ldots,n for h=m-1 down to i do for j=1 to n do b_j(h) \leftarrow \sum_{k=1}^n t_{j,k} e_k(h+1) b_k(h+1) for j=1 to n do P(\pi_i=s_j|x) \text{ is } f_j(i)b_j(i)/P(x)
```

The Forward/Backward algorithm for HMMs.

Hidden semi-Markov models (as in GenScan). Suppose that the probability of picking observed length ℓ in state s_j is $L_j(\ell)$ and that the probability of emitting a string y of length ℓ in state s_j is $E_{j,\ell}(y)$. Let $v_j(i)$ denote the maximum joint probability of picking a state path π from s_0 to s_j and emitting $x_1x_2...x_i$. If the last edge on π is from s_k to s_j and if $x_{h+1}x_{h+2}...x_i$ is emitted in state s_j , then the relevant value is the probability of emitting $x_1x_2...x_h$ and ending in state s_k (namely $v_k(h)$) time the probability of a transition to s_j (namely $t_{k,j}$) time the probability of picking emitted sequence length i-h (namely $t_j(i-h)$) times the probability of emitting $t_j(i-h)$ times the probability

$$v_j(i) = \max_{k} [\max_{h < i} E_{j,i-h}(x_{h+1}x_{h+2} \dots x_i) L_j(i-h) t_{k,j} v_k(h)]$$

Reasoning of this sort gives the appropriate variants of the Forward, Viterbi and Forward/Backward algorithms for hidden semi-Markov models.