Fundamental Methods for HMMs

In what follows, consider a fixed hidden Markov model, M, with start state sy and n other
states s1,52,...,5,. Let t;; denote the transition probability of going from s; to s;, and let
e;j(a) be the emission probability of symbol a in state s;. (State sy doesn’t emit symbols.) Thus
Si_itix =1for j =0,1,...,n, while if j > 0, then > e;(a) = 1, summing over all possible
observed symbols a. Also, fix an observed sequence x = x125...x,, consisting of m symbols.

Consider a path 7 from sy and of length m (the same length as x). That is, 7 is a connected
chain of m edges in M that starts at so. Let P(z|r) denote the conditional probability of = given
7. Then P(x|r) is the product of the probabilities of emitting x; at the ith state along 7 for all 4
with 1 <4 < m. More succinctly, P(z|r) = [[;-, ey (xi), where s, is the ith state on 7. Also, let
P(z,7) denote the joint probability of sequence x and path 7, i.e., the probability of both picking
path 7 and generating z along that path. The probability of picking 7 is P(7) = [[%, tp,_,p:
(with p; as above), and P(z,7) = P(mw)P(z|n).

Ezample. Suppose the loaded die emits 1 with probability 0.5, and emits 2 through 6 each with
probability 0.1. Suppose that the F-to-L (fair to loaded) transition has probability 0.1 and L-to-F
has probability 0.2. Finally, with probability 0.9 we start with the fair die. Consider the observed
sequence r = 1214641 and the hidden path 7 = LFFFFFL. Then P(z|7) = (0.5)(1/6)%(0.5),
P(m) = (0.1)(0.2)(0.9)4(0.1), and P(z,m) = P(z|r)P(w). Note that in this model with these
probabilities, P(z,7) > 0 whenever z and 7 have the same length.

Computing the probability that a given sequence is generated by the model. Let P(z)
denote the probability of generating  from M. Thus P(z)is ) _ P(xz, ), summing over all paths
7 from sp. (Only paths with exactly m edges contribute to the sum.) P(z) can be computed by
the so-called Forward algorithm, which is quite similar to the dynamic programming algorithm
for aligning two sequences. For i = 0,1,...,m (denoting a position in z) and j = 0,1,...,n
(denoting a state in M), define f;(i) to be Y P(z1zs...z;,p) over all paths p from so to s;.
In other words, f;(¢) is the probability of generating z1z5...x; and ending in state s;. You can
think of the f-values as forming a table with m + 1 rows and n 4+ 1 columns. We will fill in the
table by rows.

Row 0 consists of values f;(0), corresponding to paths from sq to s; that “spell out” the first
0 symbols of z. Clearly fy(0) = 1, and if j > 0 then f;(0) = 0. For any later row, say row 1,
suppose that the f-values have been determined for row ¢ — 1, and fix s;. Then z12y...72; is
generated by a path ending at s; if and only if some state s, statisfies (1) zy2z5 ... z;_1 is generated
ending in s, (probability fi(i — 1), (2) the transition from s; to s; is chosen (probability ty ;),
and (3) z; is emitted (probability e;(z;)). Summing over all possible sj, we get the recurrence
relation f;(7) = e;(x;) Y p_q tk,jfx (i — 1). This gives the following algorithm.

fo(0) < 1; f;(0) «~ 0O for j =1,2,...,n
fori=1tomdo
for j=1ton do
fi(0) = ej(@i) Dop_o tag fuli — 1)
P(x) < >0, fi(m)

The Forward algorithm for HMMs.



Computing the most probable state path generating a given observed sequence.
Given observed sequence z, we want the path 7 that maximizes P(z, 7). (This corresponds to
GenScan’s prediction of the most probably set of genes in a given genomic sequence.) Of course,
several paths may tie for the most probable path, in which case the method will pick one of
them. In essence, an optimal path can be found simply by replacing the sum operation in the
Forward algorithm by a maximization. To see that this is justified, we reason as follows. For
i=20,1,...,mand j = 0,1,...,n, define v;(i) to be the maximum P(z,z5...z;,p) over all
paths p from sy to s;. If p is restricted so that its last edge starts at sj, then the best we can do
is to optimally spell z,x5...z;_1 with a path ending at s, (probability vg(i — 1)), add the edge
to s; (probability ¢ ;), and emit z; (probability e;(z;)). This recurrence relation immediately
gives the following algorithm for computing the number max, P(z, 7).

v9(0) - 1; v;(0) <~ O for j =1,2,...,n
fori =1 tomdo
for j=1ton do
Vj (Z) — e (.IZ) maXZZO tk,jvk(i — 1)
max, P(z, ) is max}_, v;(m)

The Viterbi algorithm for HMMs.

To explicitly determine an optimizing path 7, one can save back-pointers. That is, each time a
v;(#) is computed, one can determine and save backpointer;(i), defined as the k (or one of them,
in case of a tie) such that s, immediately precedes s; on an optimal path spelling z1z,...z;
and ending at s; (i.e., the k£ that maximizes the expression used to define v;(7) in the above
pseudo-code). These edges can be used to trace out an optimal path in reverse order.

Computing the probability that a given observed symbol was generated by a given
state. Fix ¢ where 1 < 7 < m, which selects element x; of the observed sequence x. For some
or all states s; of M we want to compute the probability that z; is emitted in s;, given that z
is emitted by the full path. This value can be denoted as P(m; = s;|z), using m; to denote the
1th state on 7. It is analogous to the probability that a certain genomic segment corresponds to
an exon state of GenScan. More precisely, for fixed j we want to sum P(z, ) over all paths 7
whose ith state is s;. Dividing this value by P(x) gives P(m; = s;|z).

Recall that f;(i), as computed by the Forward algorithm, is the probability of emitting
122 . ..x; and ending in state s; (i.e., it equals ) P(x122 ... x;, p) over all paths p from sq to s;).
We need to multiply this by b,(¢), defined as the probability of emitting ;112,12 . .. 2y, given
s; as the starting point (and not emitting anything until after a state transition). In symbols,
bj(i) = P(it1%Tit2 - - - Tm|m = $;). The values b;(h) can be computed in backwards order (i.e.,
decreasing h) beginning with A~ = m. The desired recurrence relation follows from the observation
that b;(h) is the sum over all s;, of the probablity of a transition from s; to s; (namely ¢;) times
the probability of emitting xp; in state s; (namely ey (h + 1)) times the probabiliy of emitting
ThioThi3 - - - Tm, starting at sp (namely bg(h + 1)).



Compute P(z) and values f;(¢) for all j using the Forward algorithm.
bj(m) <« 1forj=1,2,...,n
for h =m — 1 down to 7 do
for j=1tondo
bj(h) < > p—1 tirer(h + )b (h +1)
for j=1tondo
P(m; = s;lx) is f;(i)b;(i)/ P (x)

The Forward /Backward algorithm for HMMs.

Hidden semi-Markov models (as in GenScan). Suppose that the probability of picking
observed length ¢ in state s; is L;(¢) and that the probability of emitting a string y of length ¢
in state s; is Ej,(y). Let v;(¢) denote the maximum joint probability of picking a state path =
from sy to s; and emitting x5 ... z;. If the last edge on 7 is from s; to s; and if 11 Zp42 ... 75
is emitted in state s;, then the relevant value is the probability of emitting zz2...z, and
ending in state s, (namely v;(h)) time the probability of a transition to s; (namely #j ;) time the
probability of picking emitted sequence length ¢ — h (namely L;(i — h)) times the probablity of
emitting Tp+1%h+2 . .. 2; (namely E;; p(Tp412h12 - .. 2;)). This gives following recurrence relation.

v;(1) = mgX[I}llg} Eji n(Thi1Thyz - - 2i)Li(i — h)tg o (h)]

Reasoning of this sort gives the appropriate variants of the Forward, Viterbi and Forward /Backward
algorithms for hidden semi-Markov models.



