
The Bioperl Toolkit: Perl Modules
for the Life Sciences

Jason E. Stajich,1,18,19 David Block,2,18 Kris Boulez,3 Steven E. Brenner,4

Stephen A. Chervitz,5 Chris Dagdigian,6 Georg Fuellen,7 James G.R. Gilbert,8

Ian Korf,9 Hilmar Lapp,10 Heikki Lehväslaiho,11 Chad Matsalla,12 Chris J. Mungall,13

Brian I. Osborne,14 Matthew R. Pocock,8 Peter Schattner,15 Martin Senger,11

Lincoln D. Stein,16 Elia Stupka,17 Mark D. Wilkinson,2 and Ewan Birney11

1University Program in Genetics, Duke University, Durham, North Carolina 27710, USA; 2National Research Council of

Canada, Plant Biotechnology Institute, Saskatoon, SK S7N OW9 Canada; 3AlgoNomics, B 9052 Gent, Belgium; 4Department

of Plant and Molecular Biology, University of California, Berkeley, California 94720, USA; 5Affymetrix, Inc., Emeryville,

California 94608, USA; 6Open Bioinformatics Foundation, Somerville, Massachusetts 02144, USA; 7Integrated Functional

Genomics, IZKF, University Hospital Muenster, 48149 Muenster, Germany; 8The Welcome Trust Sanger Institute, Welcome

Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK; 9Department of Computer Science, Washington University, St.

Louis, Missouri 63130, USA; 10Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121,

USA; 11European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD UK; 12Agriculture

and Agri-Food Canada, Saskatoon Research Centre, Saskatoon SK, S7N 0X2 Canada; 13Berkeley Drosophila Genome Project,

University of California, Berkeley, California 94720, USA; 14Cogina, New York City, New York 10022, USA; 15Center for

Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA; 16Cold Spring Harbor

Laboratory, Cold Spring Harbor, New York 11724, USA; 17Institute of Molecular and Cell Biology, 117609 Singapore

The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer

scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for

managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent

programming interface for bioinformatics application programmers. The Bioperl modules have been successfully

and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model

has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while

maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and

processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules

written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data

stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the

emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study

describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific

examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion

of how the open-source nature of the project has contributed to the development effort.

[Supplemental material is available online at www.genome.org. Bioperl is available as open-source software free

of charge and is licensed under the Perl Artistic License (http://www.perl.com/pub/a/language/misc/Artistic.

html). It is available for download at http://www.bioperl.org. Support inquiries should be addressed to

bioperl-l@bioperl.org.]

Computational analysis is an integral part of modern biologi-

cal research. Numerous computer software tools exist to per-

form data analyses, but it is not simple to automatically com-

bine data and results frommultiple sources without the use of

computer software designed to read and write data specific to

the biological domain. The day-to-day work in a typical bio-

informatics laboratory consists largely of writing program

logic to achieve this data integration.

Perl is one of the most widely used programming lan-

guages for these tasks and is commonly thought of as the

language most easily grasped by newcomers to the field. Perl

has been extremely successful for connecting software appli-

cations together into sequence analysis pipelines, converting

file formats, and extracting information from the output of

analysis programs and other text files.

Much of the Perl software in bioinformatics is specific to

18Present address: Genomics Institute of the Novartis Research
Foundation (GNF), San Diego, California 92121, USA.
19Corresponding author.
E-MAIL jason.stajich@duke.edu; FAX (919) 681-1035.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.361602.

Resource

12:1611–1618 ©2002 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/02 $5.00; www.genome.org Genome Research 1611
www.genome.org

a particular laboratory or institution and is written for imme-

diate utility rather than reusability. This results in consider-

able inefficiency, as the same software is rewritten multiple

times. The Bioperl toolkit brings together reusable Perl mod-

ules containing generalized routines specific to life-science

information. A primary motivation behind writing the toolkit

is the authors’ desire to focus energies on a solution whose

components can be shared rather than duplicating effort. In

our minds, once a routine is written for parsing and interpret-

ing sequence from EMBL and GenBank format sequence files,

no one should ever have to write this routine again. In this

spirit, we chose to make our code freely available under an

open-source license (Open Source Initiative 2001), so that

others could extend routines already in the Bioperl library and

contribute their own routines as well. Just as the Human Ge-

nome Project was facilitated by public sharing of data, so has

the open nature of the Bioperl project reduced the time for

solutions and new tools to reach the community (Waterston

et al. 2002).

To be adopted by the community, our software has to be

user friendly. To that end, Bioperl provides extensive docu-

mentation of all of the routines in each module, a graphical

diagram of the objects in the toolkit, and a set of tutorials that

lead the reader through the solutions to common tasks. Ad-

ditionally, we have created a simplified interface to Bioperl

that provides entry-level access to the toolkit. The goal of

Bioperl is to help a user focus on her specific problem at hand,

such as the logic needed to filter hits in a BLAST (Altschul et

al. 1997) report by certain criteria, rather than on the actual

mechanics of parsing that BLAST report.

Software Development Methodology
The Bioperl project began in 1995 (Chervitz et al. 1998) at a

time when there were few programming toolkits for manipu-

lating biological data or results from sequence analysis pro-

grams. Although Perl had already gained widespread popular-

ity in the bioinformatics community for its efficient support

of text processing and pattern matching tasks, there were, in

fact, no biological toolkits available in this language.

The project grew out of the following observations. First,

even though file formats of different analysis programs are

different, the information they represent is the same. For ex-

ample, a pair-wise alignment is always between two sequences

and has common properties such as length, score, fraction of

identities, start and end of the aligned sequences, and so

forth. Second, the number of data structures needed to repre-

sent information flow is limited, and common to most appli-

cations such as sequences, annotation, features, and align-

ments. This permits a small set of modules to be reused for a

variety of purposes. Third, a set of operations is commonly

performed on these data structures. These include reading and

writing information to a file, querying a sequence for its fea-

tures, and translating a coding sequence into protein.

This scenario naturally lends itself to the principle of

object-oriented programming, which Perl emulates with

modules.

Object-oriented programming is the practice of grouping

related tasks together into logical and broadly applicable com-

ponents. For example, a DNA sequence component could

contain methods to retrieve the sequence’s accession number,

reverse complement the DNA, or translate it into a protein

sequence. Object-oriented programming methodology allows

accurate modeling of the problem domain, leading to more

robust, valid, and reusable code. Instead of attacking a prob-

lem by brute force, the problem is analyzed and models are

constructed to represent the entities in the problem and so-

lution domains. The entities are represented in code through

the use of Perl modules and, where appropriate, form ele-

ments in an inheritance hierarchy. The use of inheritance and

polymorphism in Bioperl implements the well-established

principles of information hiding, modularity, and module co-

hesion (Tremblay and Cheston 2001).

We designed Bioperl using object-oriented methodology

so as to create clean, generic, and reusable modules to repre-

sent data structures and operations common to the life sci-

ences. By separating the components into logical groups such

as sequences, alignments, and databases, we have been able to

add features to a specific module without necessarily affecting

the rest of the toolkit library. This separation is a key aspect of

object-oriented programming and permits us to produce ge-

neric components with a stable interface for the programmer

(the so-called API).

At present, the components and operations in Bioperl

center around biological sequence

analysis and annotation. In the

last year, the project has expanded

to address new areas including

phylogenetics, maps, protein struc-

ture, and bibliographic references.

The project has >300 modules

and comprises >160,000 lines of

code and embedded documenta-

tion. The Perl modules, illustrated

in Table 1, are organized by logical

names so that, for example, the

Bio�Search hierarchy contains

modules related to database

searches, and Bio�Graphics con-

tains modules that are related to

drawing (Fig. 1). The Bio�Perl mod-

ule itself is a simplified API that pro-

vides access to the most-commonly

used Bioperl functions.

When designing Bioperl ob-

jects, we sought to provide a pro-

Table 1. Major Bioperl Module Groups

Modules Description

Bio�Seq Sequences and their properties
Bio�SeqIO Sequence data input/output
Bio�Index Flat-file sequence database indexing and retrieval
Bio�DB Remote database access for sequences and references via HTTP
Bio�DB�GFF SQL GFF database for DAS and GBrowse backends
Bio�SeqFeature Annotations or features that have a sequence location
Bio�Annotation Generic annotations such as Comments and References
Bio�AlignIO, Bio�SimpleAlign Multiple sequence alignments and their Input/Output
Bio�LiveSeq, Bio�Variation Sequence variations and mutations
Bio�Search, Bio�SearchIO Sequence database searches and their Input/Output
Bio�Tools Miscellaneous analysis tools
Bio�Tools�Run Wrapper for executing local and remote analyses
Bio�Tree, Bio�TreeIO Phylogenetic trees and their Input/Output
Bio�Structure Protein structure data
Bio�Map, Bio�MapIO Biological maps and their Input/Output
Bio�Biblio, Bio�DB�Biblio Bibliographic References and Database retrieval
Bio�Graphics Graphical displays of sequences

Stajich et al.

1612 Genome Research
www.genome.org

gramming interface that is very easy to use, but at the same

time, could be easily extended in its capabilities and behavior

through code reuse. Using an object-oriented paradigm, we

followed certain design principles.

First, separate the interface from the implementation.

The key information about a component is the method

names and their list of accepted arguments. Similar in concept

to interfaces in Java, we built interfaces as collections of meth-

ods that describe the expected behavior of a module, but do

not do any of the work. Child modules implement the inter-

faces, providing specializations of their parents to perform

specific tasks. To help distinguish implementation modules

from interface definitions, we used a capital I appended to the

object name. This principle is based on the well-established

methodology of specifying a given module’s Abstract Data

Type by defining how a given module will behave without

specifying the mechanism by which it achieves this end.

For example, Bio�SeqFeatureI describes the contract for

all modules that are features on sequences. This includes

methods for start, end, strand, and access to comments and

other attributes via tag/value pairs. All modules in the

Bio�SeqFeature hierarchy implement this interface (Fig. 2).

The power of this design is that operations that expect a

Bio�SeqFeatureI, such as operations in the Bio�Graphics

modules, can operate on anything that implements the

Bio�SeqFeatureI interface. In this manner, sequence annota-

tion that is retrieved from a DAS server (Dowell et al. 2001), a

local file, or a database server can all be drawn as an image

with the same methods in the Bio�Graphics modules.

Second, generalize common routines into a single mod-

ule, providing a base framework for the respective operations.

As an example, we centralized the basic input/output (IO)

operations into an IO object, called Bio�Root�IO. Because all

modules that need IO data access use operations from the IO

module, these operations are implemented across the entire

package in a consistent way. This design choice also provides

a single location for applying improvements to the shared

methods.

Third, use the Factory and Strategy patterns (Gamma et

al. 1994) as much as possible. A Strategy pattern defines one

or more operations that a particular implementation must

support. For example, Bio�SeqIO uses a Strategy pattern by

specifying that Bio�SeqIO modules must support the opera-

tion next_seq(). Various parsers implement their own parsing

Figure 1 Rendering a sequence graphically with Bio�Graphics. This image represents a 20-Kb segment of the C. elegans genome containing
annotated genes, a cross-species alignment (C. elegans to C. briggsae), EST alignments, SNPs, PCR primer pairs, and a GC content histogram. The
module’s flexible glyph-based architecture allows the application programmer to adjust precisely how to display biological objects. Glyphs allow
the programmer to define different symbols for different data types or data sources and each are drawn as a separate track in the image. The
module is also suitable for illustrating the extent of protein domains, physical (clone) maps, and horizontal maps.

The Bioperl Toolkit

Genome Research 1613
www.genome.org

algorithms, but each parser has a next_seq() method that

provides consistency and eases usage. Example usage of the

Bio�SeqIO module can be seen in Figure 3.

The Factory pattern is a design pattern used when a mod-

ule must create an object but cannot know what specific sub-

type must be created. It can serve as an aggregator for a set of

modules that implement the same Strategy. For example, the

Bio�SeqIO module acts as a Factory that produces specific

sequence file parsers for different sequence formats. When the

user asks Bio�SeqIO to parse a particular sequence file,

Bio�SeqIO determines the correct parser to instantiate and

invoke, thereby shielding application code from the technical

details of the sequence file format

and the Bio�SeqIO object hierar-

chy. Application code can be writ-

ten generally to handle sequence

input without worrying about

whether it is processing a sequence

file in GenBank, EMBL, SwissProt,

or BSML format, or whether the se-

quence data is local, or being re-

trieved dynamically from a remote

database via the Internet.

Bioperl is written purely in Perl

and requires at least version 5.005

of the Perl interpreter (the current

stable version of Perl as of the time

of writing is 5.8.0). The toolkit has

been validated for cross-platform

compatibility on most UNIX and

UNIX-like operating systems. In ad-

dition, Bioperl has been tested and

runs onMacintosh OS X andMicro-

soft Windows operating systems.

Because the Bioperl toolkit de-

pends on the Perl interpreter, there

are a number of rare cases in which

its behavior is not consistent across

different versions of Perl or between

versions of Perl on certain operat-

ing systems. Descriptions of these

version-specific problems and their

solutions are available from the Bio-

perl Web site.

In addition to pure Perl solu-

tions to bioinformatics problems, Bioperl can take advantage

of external data analysis packages. Bioperl is capable of pars-

ing the output from a variety of programs including BLAST

[both NCBI and WUBLAST (Gish 2002) versions], HMMer

(Eddy 2001), ClustalW (Thompson et al. 1994), T-Coffee

(Notredame et al. 2000), Phylip (Felsenstein 1983), many EM-

BOSS (Rice et al. 2000) programs, Genscan (Burge and Karlin

1997), and 18 others. In addition, it can launch remote analy-

ses using the EMBOSS suite, NCBI BLAST, and the multiple

sequence alignment programs ClustalW and T-Coffee. In

some cases, when an external package is not available, Bioperl

will fall back to using a slower method, either by emulating

the package in pure Perl or by invoking a network-based

analysis service such as the NCBI BLAST analysis queue. Ad-

ditional work is in progress to incorporate into the project

access to remote analysis services at the European Bioinfor-

matics Institute (EBI) (Novella: http://industry.ebi.ac.

uk/novella) and Pasteur Institute (Pise: http://bioweb.pasteur.

fr).

For us to produce uniform software code, we established

coding guidelines that are extensions of widely accepted ob-

ject-oriented programming style. All modules were required

to meet minimal standards before release. These standards

include a complete set of regression tests, well-formed embed-

ded documentation for each method, and a concise example

code in the SYNOPSIS section of each module’s documenta-

tion. We use the Perl embedded documentation format

(called POD, or Plain Old Documentation) to interleave docu-

mentation and the source code. This documentation can be

converted to text, TeX, or HTML. We have used the Pdoc

(http://pdoc.sourceforge.net) tool to generate colored and hy-

Figure 2 This figure shows a portion of the Bioperl object model including the interfaces (shown in
italicized type) for sequences (PrimarySeqI, SeqI, RichSeqI) and their implementations PrimarySeq
(general sequence), Seq (sequence with features), RichSeq (sequence with features and rich annota-
tion), LargePrimarySeq (for sequences too large to be held in a program’s memory), and LargeSeq
(large sequences with features). Also included in the diagram is the sequence feature interface (Seq-
FeatureI) and its implementations Similarity (manage similarity information), FeaturePair (paired fea-
ture information), and SimilarityPair (paired similarity information such as a pair-wise alignment infor-
mation). Additionally, the diagram shows the location objects that manage Simple (start, end, and
strand information), Split (multiple start and end spots on a sequence such as a set of exons), and
so-called Fuzzy locations (where start, end or span is not exact) for sequence features.

Figure 3 Retrieving a sequence from a remote database with
Bio�DB�EMBL. This code retrieves an mRNA sequence in EMBL for-
mat from the EBI EMBL databank with the accession no. U14680 and
writes the sequence out in GenBank format to the terminal. One
could replace Bio�DB�EMBL with Bio�DB�GenBank and instead
retrieve the sequence from NCBI just as easily, as the software can
read and write both EMBL and GenBank formats and is able to con-
nect to both services through the World Wide Web. The retrieved
sequence can then be passed to Bio�Graphics for graphical render-
ing, to the Bio�SeqIO interface for writing to a file, or to the ODBA
interfaces for storage in a relational database.

Stajich et al.

1614 Genome Research
www.genome.org

perlinked documentation in HTML for easy online browsing

available at http://doc.bioperl.org.

Our development process often starts when someone

presents an idea for a needed tool on our mailing list. Ideally,

a prototype or example code is posted, and we discuss ideas

for implementation and common scenarios for where the

functionality is needed. The developer then writes, or pre-

pares from code he already has, an interface for the proposed

module that describes the basic routines the module will

implement. For the newmodule, we require a set of regression

tests to be written. This is intended to ensure that the module

satisfies its declared interface and can be tested easily later on

when other modules that may interact with it have been up-

dated. Bioperl 1.0 >3000 such tests that passed on multiple

platforms before the toolkit was declared ready for release.

Finally, all Bioperl code is subject to ongoing code review by

and with the core developer group. This methodology is de-

rived in large part from the software development strategy

called Extreme Programming (Beck 1999). This process is

highly iterative and modules are often revisited and improved

depending on the needs of the developer. We attempt to al-

ways maintain a backward compatibility, so that code that

depends on an earlier version of the module will continue to

work.

To support multiple developers in different time zones

and institutions, the entire Bioperl source code is hosted by

the Open Bioinformatics Foundation (OBF) (http://www.

open-bio.org) on a server in which our code and documenta-

tion is shared among developers and interested users. Infor-

mation on how to obtain the source directly from our server

is available at the project Web site http://www.bioperl.org

and the source code server at http://cvs.open-bio.org.

RESULTS
Bioperl has >20 active developers led by a core of five primary

developers who ensure that standards are met, prepare code

releases, and set the vision for the project. At the time of

writing, the mailing lists for the project include 1300 sub-

scribers, and our Web site recieves an average of 10,000

unique visitors each month. The project has been used in a

variety of endeavors including genome sequencing, annota-

tion, sequence variation elucidation, disease gene discovery,

and comparative genomics. An example using Bioperl mod-

ules to complete the task of retrieving sequences from a re-

mote database is shown in Figure 3, and an example of pars-

ing a BLAST report can be seen in Figure 4.

By far, the most advanced use of the Bioperl toolkit has

come through the EnsEMBL (Hubbard et al. 2002) project.

The basic sequence handling, file format parsing, and se-

quence features for annotation model have been used as

building blocks for automatically annotating the Danio rerio,

Drosophila melanogastor, Takifugu rubripes, Homo sapiens,

Anopheles gambiae, and Mus musculus genomes (http://www.

ensembl.org).

Additionally, the Genquire (Wilkinson et al. 2002) an-

notation package is built on top of the Bioperl object model

and stores sequence and annotation data in a relational data-

base. The interactive sequence-rendering capabilities are par-

titioned into a specific Bioperl package called bioperl-gui.

The Generic Model Organism Browser (GBrowse) (L.D.

Stein, A. Day, T. Harris, A. Arva, S. Shu, S. Lewis, and C. Mun-

gall, in prep.), Distributed Annotation System Perl (DAS)

server (Dowell et al. 2001), and TFBS (Lenhard and Wasser-

man 2002) all use the Bioperl object model to describe se-

quences and Bioperl tools to complete analyses. The GBrowse

system is aWeb interface to databases of features for a genome

project. The DAS system provides researchers a means to an-

notate sequences locally and publish the annotations to the

community via the DAS XML protocol. TFBS provides a Perl

implementation of objects for DNA sequence pattern repre-

sentation by matrix profiles, with associated methods for

searching the sequences for the occurrence of patterns, pat-

tern storage, and generation of new patterns. The implemen-

tation uses Bioperl sequence, alignment, sequence features,

and feature pair objects.

Interoperability
Sometimes the best solution for a bioinformatics problem is a

hybrid of multiple tools. Providing interoperability between

languages allows a programmer using the toolkit to build

components using work done in other languages and

projects. These tools, written in different programming lan-

guages such as C, Java, and Python, can be used within a Perl

program simply by invoking them (a process often called

shelling out). In some situations, these tools require that data

be available in a certain format or within a certain database.

Bioperl provides software layers that can, for example, popu-

late a database with sequence information that can be ac-

cessed and used to generate an interactive graphical interface

provided by the Biojava toolkit. In other cases, Bioperl is used

to create files in a format recognized by other programs so

that they can perform their analyses.

Bioperl also supports a number of Extensible Markup

Language (XML) standard data exchange formats accepted in

the Bioinformatics community. Previous work has outlined

scenarios in which XML has been useful in a biological con-

text (Achard et al. 2001). XML standards supported by Bioperl

Figure 4 Report parsing with Bio�SearchIO. This code parses a
BLAST report from a file called report.bls and saves, in an array called
@HitsToSave, only the hits that have High-scoring Segment Pairs
(HSPs) meeting an e-value and length threshold. In this case, any hit
with e-value >0.001 or length < 120 residues will be excluded. Once
the array is built, the names of each of the hits that had a HSP that met
the criteria are printed out. To parse a FASTA (Pearson and Lipman
1988) report file one simply changes the format specification from
blast to fasta.

The Bioperl Toolkit

Genome Research 1615
www.genome.org

include the sequence markup formats Bioinformatics Se-

quence Markup Language (BSML; http://www.bsml.org) and

Berkeley Drosophila Genome Project’s (http://www.fruitfly.

org) Genome Annotation Markup Elements (GAME; http://

www.bioxml.org/dtds/index.html), NCBI BLAST XML for

BLAST reports, and the bibliographic standards Medline XML

provided by the European Bioinformatics Institute’s Biblio-

graphic Query Service (BQS; http://industry.ebi.ac.uk/

openBQS/) and Entrez Pubmed XML format (Wheeler et al.

2002). By supporting these XML-based formats, programs us-

ing Bioperl are able to process data from a growing number of

data sources that have adopted them as their standard. Fur-

thermore, the extensible nature of XML allows new features

to be added to the data formats without breaking existing

parsers and code.

Software can interoperate not only through the invoca-

tion of external programs, but also through invoking meth-

ods on remote components possibly written in a different

programming language from the calling component. Such a

mechanism constitutes the tightest integration of reusable

software components in a language-independent way. The

Common Object Request Broker Architecture (CORBA) (Ob-

ject Management Group 2001) provides an architecture for

enabling this technology. This technology has been applied

to biological data at the EBI in their Radiation Hybrid (Rod-

riguez-Tomé and Lijnzaad 2001) and EMBL Nucleotide Data-

bases (Wang et al. 2000). CORBA implementations are avail-

able from commercial vendors (e.g., Inprise’s VisiBroker, IO-

NA’s ORBacus) as well as from open-source projects (e.g.,

ORBit, MICO). Bioperl is compliant with the BioCORBA

project (http://www.biocorba.org), one of the proposed stan-

dards for CORBA components for biological processes.

BioCORBA is also supported by the Biojava (http://www.

biojava.org) and Biopython (http://www.biopython.org)

projects. The standard is under consideration for adoption by

the Management Group’s Life Science Research group (http://

lsr.ebi.ac.uk) and is included in the proposed Open Bioinfor-

matics Database Access (OBDA; http://obda.open-bio.org)

standard for sequence data access. Bioperl’s support for

BioCORBA allows applications written on top of Bioperl to

interact transparently with remote BioCORBA servers to per-

form operations as diverse as protein domain analysis and

bibliographic retrieval, without knowing any of the details of

the CORBA protocol.

Last, Bioperl fully supports the recent Open Bioinformat-

ics Database Access initiative (OBDA), a language-

independent relational database schema for the storage and

retrieval of GenBank/EMBL entry-based sequences. By sup-

porting this common schema, sequence objects that are cre-

ated and maintained by Bioperl can be accessed and manipu-

lated by OBDA-compliant programs written in Java, Python,

Ruby, or C. This provides a level of read/write cross-platform

data compatibility unmatched by any other sequence data-

base project, and enables extensive enterprise-level applica-

tion development.

DISCUSSION
Open-source development has proven to be a valuable and

productive mechanism for creation of the toolkit. No single

individual owns the project, rather it is owned by the

community of contributors. The community approach pre-

vents the death of a project due to loss of interest by the

sole developer and does not permit project stagnation in

the confines of a single laboratory in which a single indi-

vidual or group is responsible for the continued vitality of a

project. The original Bioperl project team has been replaced

completely over the last 7 yr as members leave the project and

new contributors join; however, the project aims have re-

mained focused, whereas the functionality has continued to

expand.

Throughout the development process, we learned a great

deal about appropriate software practices for a diverse group

of contributors. Our programming methodology, which in-

cludes defining use cases for our software, establishing a com-

prehensive regression test suite, and utilizing code reviews or

audits of contributed source code, helped the community de-

velop code that is compatible and consistent. The principles

of good design and good documentation have made it easier

for new developers to join the project.

A number of previous collaborative projects to develop

comprehensive libraries for the life sciences have produced

unsatisfactory results, or have been aborted prior to fruition.

We believe that in many of these cases, ongoing develop-

ment was stymied by a lack of commitment to open-source

principles. For example, BioWidgets, an early attempt to

create a Java-based biological toolkit, did not adopt an open-

source methodology at its inception. This left it open to

intellectual property disputes, and ultimately the project

dissolved as early contributors withdrew their software from

the project (N. Goodman, pers. comm.). In contrast, none of

the software placed in Bioperl can be withdrawn from the

project, because it has been explicitly donated to the commu-

nity using a license that expressly permits copying and modi-

fication.

Another example of a non-open-source project that has

failed to live up to its potential is the NCBI toolkit (ftp://ftp.

ncbi.nih.gov/toolbox/ncbi_tools/), a powerful and highly

functional C-language-based toolkit. Despite its quality, the

toolkit has failed to achieve widespread usage because of ac-

knowledged deficiencies in its documentation and a develop-

ment process that is closed. By limiting the development pro-

cess to NCBI personnel, the toolkit has evolved to work best

within the NCBI environment and to address NCBI-specific

operating procedures. Outside of the NCBI, the toolkit is used

to run BLAST, whereas other functionality lies fallow. In con-

trast, Bioperl has a large and active user base because of ex-

tensive interaction between the developers and the users of

the library. We allow users to contribute bug fixes and docu-

mentation improvements directly to the project, thereby

keeping the project relevant to their needs.

We feel that much of the success of the Bioperl toolkit

can be attributed to the open-source nature of the project that

has allowed a diverse group of individuals to participate in a

collaborative effort. We have successfully encouraged users of

the toolkit to assist in the development by contributing bug

fixes, documentation enhancements, and new functionality

for the benefit of all users. Contributors are part of academic,

governmental, nonprofit, pharmaceutical, and commercial

bioinformatics groups on every continent. This collaboration

and the guiding principle to get working products written in

an extensible manner have made Bioperl an excellent plat-

form for Perl bioinformatics software development. The open

sharing and discussion of ideas that embodies the scientific

spirit has proven to be successful in the world of scientific

software development as well.

The open-source development model also has some

drawbacks, which came to light throughout the lifetime of

Stajich et al.

1616 Genome Research
www.genome.org

the project. One drawback is that component development is

only focused on what contributors find useful for their own

work. Because developers tend to be technically advanced, the

code documentation and tutorials have been geared toward

these types of advanced users. Further, when a strong devel-

oper has left the project, it has not always been immediately

possible to find a contributor willing to carry on the portion

of the project for which the original developer was respon-

sible. As a result, some parts of the project have been tempo-

rarily neglected, and in some cases phased out.

We have addressed these issues by establishing guide-

lines for contributions that includes a commitment to com-

prehensive documentation and high standards for released

code. When necessary, we gracefully retire unmaintained

components by providing deprecation warnings to the com-

munity, and at all times endeavor to ensure that there is a

clear migration path from deprecated modules to new mod-

ules that provide equivalent functionality.

In the future, Bioperl will continue to evolve, addressing

more domains of bioinformatics. We plan to create objects to

manage sequence assembly information, haplotype maps,

gene expression, and protein interaction data. Additionally,

projects focusing on multispecies comparisons will build Perl

modules to manage alignment and syntenic information. We

will create software layers to interact with OBDA databases,

develop a generic analysis pipeline system to provide auto-

mated analysis components, and expand the supported file

formats the toolkit can read and write.

ACKNOWLEDGMENTS
The current Bioperl Core comprises, in alphabetical order,
Ewan Birney, Hilmar Lapp, Heikki Lehväslaiho, Jason Stajich,
and Lincoln Stein. The authors acknowledge contributions
from the following people, in alphabetical order: Brad Chap-
man, Michele Clamp, Tony Cox, James Cuff, Andrew Dalke,
Allen Day, Arne Elofsson, Mark Fiers, Ed Green, Roger Hall,
Peter van Heusden, Joseph Insana, Nicolas Joly, Aaron J
Mackey, Emmanuel Mongin, Jong Park, Lorenz Pollak, Rich-
ard Resnick, Todd Richmond, Gert Thijs, Charles Tilford, An-
drew Walsh, Kai Wang, and Alex Zelensky. Additional ideas
and help came from other OBF project team members includ-
ing Jeff Chang, Thomas Down, Keith James, and all of the
Bioperl mailing list members. Some parts of the object model,
especially locations, were adopted from the excellent work of
the Biojava project and its leaders Thomas Down and Mat-
thew Pocock. We acknowledge the former project coordina-
tors, in chronological order: Steven Brenner, Chris Dagdigian,
Georg Fuellen, Steve Chervitz, and Ewan Birney, as well as
initial contributors Jong Park and Richard Resnick, who pro-
vided help establishing the project. Our group owes its early
organizational support to its association with the VSNS-BCD
BioComputing Courses, http://www.techfak.uni-bielefeld.de/
bcd/welcome.html, funded by the Association for the Promo-
tion of Science and Humanities in Germany (Stifterverband
fur die Deutsche Wissenschaft). We thank Brian Osborne and
Peter Schattner for their documentation and tutorial work,
and Chris Dagdigian for his tremendous support as computer
systems administrator for the OBF. The Bioperl project and its
sister projects (commonly referred to as the Bio{*} projects) are
supported under the umbrella of the Open Bioinformatics
Foundation (http://www.open-bio.org). OBF has received
hardware donations from Compaq and Sun Microsystems,
and we accept donated bandwidth and computer server space
from Wyeth Research. J.E.S. is supported by NIH Genetics
training grant T32 GM07754–22. S.E.B is supported by NIH
grant 1 K22 HG00056. I.K. is supported by NHGRI Grant K22

HG-00064-01. L.D.S. is supported by NIH grants HG00739
and P41HG02223. E.B. is support by EMBL core funding. We
thank F. Dietrich, M. DeLong, M. Hahn, and two anonymous
reviewers for their comments on this work.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Achard, F., Vaysseix, G., and Barillot, E. 2001. XML, Bioinformatics,
and data integration. Bioinformatics 17: 115–125.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D.J. 1997. Gapped BLAST and
PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Res. 25: 3389–3402.

Beck, K. 1999. Extreme programming examined: Embrace change.
Addison Wesley, Reading, MA.

Burge, C. and Karlin, S. 1997. Prediction of complete gene stuctures
in human genomic DNA. J. Mol. Biol. 268: 78–94.

Chervitz, S.A., Fuellen, G., Dagdigian, C., Brenner, S.E., Birney, E.,
and Korf, I. 1998. Bioperl: Standard perl modules for
bioinformatics. Bio Informatics Technology and Systems (BITS),
http://www.bitsjournal.com/bioperl.html.

Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., and Stein, L.D. 2001.
The distributed annotation system. BMC Bioinformatics 2: 7.

Eddy, S.R. 2001. HMMER: Profile hidden Markov models for
biological sequence analysis. http://hmmer.wustl.edu.

Felsenstein, J. 1983. PHYLIP (Phylogeny Inference Package) version
3.5c. Distributed by the author. Department of Genetics,
University of Washington, Seattle.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design
patterns: Elements of reusable -object-oriented software. Addison
Wesley, Reading, MA.

Gish, W. 2002. Washington University BLAST. http://blast.wustl.edu.
Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L.,
Cox, T., Cuff, J., Curwen, V., Down, T., et al. 2002. The Ensembl
genome database project. Nucleic Acids Res. 30: 38–41.

Lenhard, B. and Wasserman, W.W. 2002. TFBS: Computational
framework for transcription factor binding site analysis.
Bioinformatics 18: 1135–1136.

Notredame, C., Higgins, D.G., and Heringa, J. 2000. T-coffee: A
novel method for multiple sequence alignments. J. Mol. Biol.
302: 205–217.

Object Management Group 2001. CORBA/IIOP Specification. OMG
publications. http://www.omg.org/technology/documents/
formal/corba_iiop.htm.

Open Source Initiative 2001. The open-source definition.
http://opensource.org/docs/definition.html.

Pearson, W.F. and Lipman, D.J. 1988. Improved tools for biological
sequence analysis. Proc. Natl. Acad. Sci. 85: 2444–2448.

Rice, P., Longden, I., and Bleasby, A. 2000. The European molecular
biology open source suite. Trends Genet. 16: 276–277.

Rodriguez-Tomé, P. and Lijnzaad, P. 2001. Rhdb: The radiation
hybrid database. Nucleic Acids Res. 29: 165–166.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL
W:Improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res.
22: 4673–4680.

Tremblay, J.P. and Cheston, G. 2001. Data structures and software
development in an object-oriented domain. Prentice Hall, Upper
Saddle River, NJ.

Wang, L., Rodriguez-Tomé, P., Redaschi, N., McNeil, P., Robinson,
A., and Lijnzaad, P. 2000. Accessing and distributing EMBL data
using CORBA (common object request broker architecture).
Genome Biol. 1: research0010.1–0010.10.

Waterston, R.H., Lander, E.S., and Sulston, J.E. 2002. On the
sequencing of the human genome. Proc. Natl. Acad. Sci.
99: 3712–3716.

Wheeler, D.L., Church, D.M., Lash, A.E., Leipe, D.D., Madden, T.L.,
Pontius, J.U., Schuler, G.D., Schriml, L.M., Tatusova, T.A.,
Wagner, L., et al. 2002. Database resources of the National
Center for Biotechnology Information: 2002 Update. Nucleic
Acids Res. 30: 13–16.

Wilkinson, M.D., Block, D., and Crosby, W.L. 2002. Genquire:
Genome annotation browser/editor. Bioinformatics (in press).

The Bioperl Toolkit

Genome Research 1617
www.genome.org

WEB SITE REFERENCES
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/; NCBI toolkit.
http://bioweb.pasteur.fr; L’Institut Pasteur Bioweb (Pasteur Institute).
http://doc.bioperl.org; Bioperl code documentation page.
http://forkhead.cgr.ki.se/TFBS/; TFBS Project.
http://industry.ebi.ac.uk/novella/; EBI Novella project Institute.
http://industry.ebi.ac.uk/openBQS/; BQS –Bibliographic Query
Service.

http://lsr.ebi.ac.uk; Management Group’s Life Science Research
group.

http://obda.open-bio.org; Open Bioinformatics Database Access.
http://opensource.org/docs/definition.html; Open-Source
Initiative–Open-Source definition.

http://pdoc.sourceforge.net; Pdoc home page.
http://www.biocorba.org; BioCORBA Project.

http://www.biojava.org; Biojava Project.
http://www.bioperl.org; Bioperl Project.
http://www.biopython.org; Biopython Project.
http://www.bioxml.org/dtds/index.html; GAME–Genome
Annotation Markup Elements.

http://www.bsml.org; BSML–Bioinformatic Sequence Markup
Language.

http://www.ebi.ac.uk; EMBL Outstation–European Bioinformatics
Institute.

http://www.ensembl.org; EnsEMBL Project.
http://www.fruitfly.org; Berkeley Drosophila Genome Project.
http://www.open-bio.org; Open Bioinformatics Foundation.

Received May 4, 2002; accepted in revised form August 9, 2002.

Stajich et al.

1618 Genome Research
www.genome.org

