
Notes on Dynamic-Programming Sequence Alignment

Introduction. Following its introduction by Needleman and Wunsch (1970), dynamic pro-
gramming has become the method of choice for ‘‘rigorous’’ alignment of DNA and protein
sequences. For a number of useful alignment-scoring schemes, this method is guaranteed to pro-
duce an alignment of two giv en sequences having the highest possible score.

For alignment scores that are popular with molecular biologists, dynamic-programming
alignment of two sequences requires quadratic time, i.e., time proportional to the product of the
two sequence lengths. In particular, this holds for affine gap costs, that is, scoring schemes under
which a gap of length k is penalized g + ek, where g is a fixed ‘‘gap-opening penalty’’ and e is a
‘‘gap-extension penalty’’ (Gotoh, 1982). (More general alignment scores, which are more expen-
sive to optimize, were considered by Waterman et al., 1976, but have not found wide-spread
use.) Quadratic time is necessitated by the inspection of every pair (i, j), where i is a position in
the first sequence and j is a position in the second sequence. For many applications, e.g.,
database searches, such an exhaustive examination of position pairs may not be worth the effort,
and a number of faster methods have been proposed, such as Blast.

The Dynamic-Programming Alignment Algorithm. It is quite helpful to recast the prob-
lem of aligning two sequences as an equivalent problem of finding a maximum-score path in a
certain graph, as has been observed by a number of authors, including Myers and Miller (1989).
This alternative formulation allows the problem to be visualized in a way that permits the use of
geometric intuition. We find this visual imagery critical for keeping track of the low-level details
that arise in development and implementation of dynamic-programming alignment algorithms.

An alignment of two sequences, say S and T , is a rectangular array of symbols having two
rows, such that removing all dash characters from the first row (if any are there) gives S, and
removing dashes from the second row giv es T . Also, we do not allow columns containing two
dash symbols. For instance,

AAGCAA-A
A-GCTACA

is an alignment of AAGCAAA and AGCTACA.

For the current discussion, we assume the following simple alignment-scoring scheme. For
each possible aligned pair [x

y], where each of x and y is either a normal sequence entry or the

symbol ‘‘−’’, there is an assigned score σ ([x

y]). The score of a pairwise alignment is defined to

be the sum of the σ -values of its aligned pairs (i.e., columns). For instance if we score each
match (i.e., column of identical symbols) 1, and each other column −1, then the above alignment
scores 1 − 1 + 1 + 1 − 1 + 1 − 1 + 1 = 2.

Recall that a directed graph G = (V , E) consists of a set V of nodes (also called vertices)
and a set E of edges. The edge from node u to node v, if it exists, is denoted u → v. A sequence
of consecutive edges u1 → u2, u2 → u3, . . . , uk−1 → uk is a path from u1 to uk . If each edge
u → v is assigned a score σ (u → v), then the score of such a path is Σk−1

i=1 σ (ui → ui+1).

We now describe the relationship between maximum-score paths and optimal alignments.
Consider two sequences, A = a1a2

. . . aM and B = b1b2
. . . bN . That is, A contains M symbols

and B contains N symbols, where the symbols are from an arbitrary ‘‘alphabet’’ that does not
contain the dash symbol, ‘‘−’’. The alignment graph for A and B, denoted G A, B, is an edge-
labeled directed graph. The nodes of G A, B are the pairs (i, j) where i∈[0, M] and j ∈[0, N]. (We
use the notation [p, q] for the set { p, p + 1, . . . , q − 1, q}.) When graphed, these nodes are

-2-

arrayed in M + 1 rows (row i corresponds to ai for i∈[1, M], with an additional row 0) and N + 1
columns (column j corresponds to b j for j ∈[1, N]). The edge set for G A, B consists of the fol-
lowing edges, labeled as indicated.

1. (i − 1, j) → (i, j) for i∈[1, M] and j ∈[0, N], labeled [ai

−]
2. (i, j − 1) → (i, j) for i∈[0, M] and j ∈[1, N], labeled [−

b j
]

3. (i − 1, j − 1) → (i, j) for i∈[1, M] and j ∈[1, N], labeled [ai

b j
]

Fig. 1 provides an example of the construction.

−
T

−
C

−
T

−
C

−
T

−
C

−
C

T
C

C
C

−
C

−
T

−
T

T
T

C
T

−
T

−
C

−
T

−
C

−
C

T
C

C
C

−
C

−
C

FIG. 1. Alignment graph G A, B for the sequences A = TC and B = CTC .

It is instructive to look for a path from (0, 0) (the upper left corner of the graph of Fig. 1) to
(2, 3) (the lower right) such that the labels along the path ‘‘spell’’ the alignment:

-TC
CTC

The first aligned pair is [−
C], so the first edge must be horizontal. The second pair is [T

T], so the

second edge must be diagonal. The third pair is [C

C], so the third edge must be diagonal. Gener-

ally, when a path descends from row i − 1 to row i, it picks up an aligned pair with top entry ai .
A path from (0, 0) to (M , N) has zero or more horizontal edges, then a vertical or diagonal edges
to row 1, then zero or more horizontal edges, then an edge to row 2, then . . ., so the top entries of
the labels along the path are a1, a2, . . ., possibly with some interspersed dashes. Similarly, the
bottom entries spell B if dashes are ignored, so the aligned pairs spell an alignment of A and B.
Indeed, alignments are in general equivalent to paths, as we now state more precisely.

Fact: Let G A, B be the alignment graph for sequences A and B. With each path from (0, 0)
to (M , N) associate the alignment formed by concatenating the edge labels along the path, i.e.,
the alignment ‘‘spelled’’ by the path. Then every such path determines an alignment of A and B,
and every alignment of A and B is determined by a unique path. In other words, there is a one-to-
one correspondence between paths in G A, B from (0, 0) to (M , N) and alignments of A and B.
Furthermore, if the score σ (π) is assigned to each edge of G A, B, where π is the aligned pair label-
ing that edge, then a path’s score is exactly the score of the corresponding alignment.

-3-

At each node, the score is computed from the scores of immediate predecessors and of
entering edges, which are pictured in Fig. 2. The procedure of Fig. 3 computes the maximum
alignment score by considering rows of G A, B in order, sweeping left to right within each row.
S[i, j] denotes the maximum score of a path from (0, 0) to (i, j). Lines 7-10 mirror Fig. 2. In row
0 there is but a single edge entering a node (lines 2-3), and similarly for column 0 (line 5). This is
a quadratic-space procedure since it uses the (M+1)-by-(N+1) array S to hold all node-scores.

jj−1

i−1

i
(

−
bj

σ)
a
i−

(σ
)

b
j

a
i

(σ

)

FIG. 2. Edges entering node (i, j) and their scores.

1. S[0, 0] ← 0

2. for j ← 1 to N do
3. S[0, j] ← S[0, j − 1] + σ ([−

b j
])

4. for i ← 1 to M do

5. S[i, 0] ← S[i − 1, 0] + σ ([ai

−]}

6. for j ← 1 to N do

7. Vertical ← S[i − 1, j] + σ ([ai

−])

8. Diagonal ← S[i − 1, j − 1] + σ ([ai

b j
])

9. Horizontal ← S[i, j − 1] + σ ([−
b j
])

10. S[i, j] ← max{Vertical, Diagonal, Horizontal}

11. write "Maximum alignment score is" S[M , N]

FIG. 3. Score-only alignment algorithm.

Local Alignment. In many applications, a global (i.e., end-to-end) alignment of the
two giv en sequences is inappropriate; instead, a local alignment (i.e., involving only a
part of each sequence) is desired. In other words, one seeks a high-scoring path that need
not terminate at the corners of the dynamic-programming grid (Smith and Waterman,
1981). The highest local alignment score can be computed as follows:

-4-

S[i, j] ← max











0 if 0 ≤ i ≤ M and 0 ≤ j ≤ N

S[i − 1, j] + σ ([ai

−]) if 1 ≤ i ≤ M and 0 ≤ j ≤ N

S[i − 1, j − 1] + σ ([ai

b j
]) if 1 ≤ i ≤ M and 1 ≤ j ≤ N

S[i, j − 1] + σ ([−
b j
]) if 0 ≤ i ≤ M and 1 ≤ j ≤ N

Further complications arise when one seeks k best alignments, where k > 1. For
computing an arbitrary number of non-intersecting and high-scoring local alignments,
Waterman and Eggert (1987) developed a very time-efficient method.

REFERENCES

Gotoh, O. (1982) An improved algorithm for matching biological sequences. J. Mol.
Biol. 162, 705-708.

Needleman, S. B. and C. D. Wunsch (1970) A general method applicable to the search for
similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48, 443-453.

Smith, T. F. and M. S. Waterman (1981) Identification of common molecular sequences.
J. Mol. Biol. 197, 723-728.

Waterman, M. S., T. F. Smith and W. A. Beyer (1976) Some biological sequence metrics.
Adv. Math. 20, 367-387.

Waterman, M. S. and M. Eggert (1987) A new algorithm for best subsequence alignments
with application to tRNA-rRNA comparisons. J. Mol. Biol. 197, 723-728.

